

8位微控制器

KF8TS2508/10/14 数据手册

产品订购信息

芯片型号	订 货 号	封装	FLASH	RAM(Byte)	内部 HFOSC(Hz)	外部 HF/ LFOSC(Hz)	8位定时器	16位定时器	8 位 PWM	12 位 ADC	触摸按键	12C	内部参考电压	工作电压(V)		
KF8TS2508	KF8TS2508SD	SOIC-14								8	8					
KF8TS2510	KF8TS2510SE	SOIC-16	4Kx16	4Kx16	4Kx16							10	10			
	KF8TS2514SG	SOIC-20				4Kx16	400	16M	16M/ 32.768k	1	3	2			1	2V/3V/4V
KF8TS2514	KF8TS2514OG	SSOP-20				32.700K				14	14					
	KF8TS2514NG	QFN-20														

版权所有@

上海芯旺微电子有限公司

本文档为上海芯旺微电子有限公司在现有数据资料基础上慎重且力求准确无误编制而成.确保应用符合技术规范,是您自身应负的责任。上海芯旺微电子有限公司不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。上海芯旺微电子有限公司对因这些信息及使用这些信息而引起的后果不承担任何责任。如果将芯旺微电子有限公司的芯片用于生命维持和或生命安全应用,一切风险由使用方自负。使用方同意在由此引发任何一切伤害、索赔、诉讼或费用时,会维护和保障上海芯旺微电子有限公司免于承担法律责任,并加以赔偿。

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,可能有更新的信息所替代。上海芯旺微电子有限公司会不定期进行更新,恕不另行通知。使用方如需获得最新的产品信息,请及时访问上海芯旺微电子有限公司官网或与上海芯旺微电子有限公司联系。

KF8TS25XX 芯片使用注意事项

芯片的 ESD 防护措施

KF8TS25XX 芯片提供满足工业级 ESD 标准保护电路。建议用户根据芯片存储/应用的环境采取适当静电防护措施。应注意应用环境的湿度;建议避免使用容易产生静电的绝缘体;存放和运输应在抗静电容器、抗静电屏蔽袋或导电材料容器中;包括工作台在内的所有测试和测量工具必须保证接地;操作者应该佩戴静电消除手腕环手套,不能用手直接接触芯片等。

芯片的 EFT 防护措施

KF8TS25XX 芯片提供满足工业级 EFT 标准的保护电路。当 MCU 芯片应用在 PCB 系统时,需要遵守 PCB 相关设计要求,包括电源线、地线(包括数字/模拟电源分离,单点/多点接地等)、复位管脚保护电路、电源和地之间的去耦电容、高低频电路单独分别处理以及单/多层板选择等。

芯片的 LATCH-UP 防护措施

为有效防护LATCH-UP损坏芯片,用户需保证在VDD引脚上不出现异常高压或者负压。 建议用户在 VDD 和 VSS 之间并接两个 105 和 102 大小的电容,电容尽量靠近芯片的 VDD 引脚。

芯片的焊接

KF8TS25XX 芯片的焊接应按照工业标准的焊接要求,以免损坏芯片。手工焊接时注意焊接的温度和焊接时间。

芯片的上电/断电

KF8TS25XX 芯片提供独立电源管脚。当 KF8TS25XX 芯片应用在多电源供电系统时,应先对 MCU 芯片上电,再对系统其他部件上电;反之,断电时,先对系统其他部件断电,再对 MCU 芯片断电。若操作顺序相反则可能导致芯片内部元件过压或过流,从而导致芯片故障或元件退化。

芯片的复位

KF8TS25XX 芯片提供内部上电复位。对于不同的快速上电/断电或慢速上电/断电系统,内部上电复位电路可能失效,建议用户使用外部复位、断电复位、看门狗复位等,确保复位电路正常工作。在系统设计时,若使用外部复位电路,建议采用三极管复位电路、RC 复位电路。若不使用外部复位电路,建议采用复位管脚接电阻到电源,或采取必要的电源抖动处理电路或其他保护电路。具体可参照芯片的数据手册说明。

芯片的内部时钟

KF8TS25XX 芯片提供内部时钟源。内部时钟源会随着温度、电压变化而偏移,可能会影响时钟源精度。具体可参照芯片的数据手册说明。

芯片的初始化

KF8TS25XX 芯片提供各种内部和外部复位。对于不同的应用系统,有必要对芯片寄存器、内存、功能模块等进行初始化,尤其是 I/O 管脚复用功能进行初始化,避免由于芯片上电以后,I/O 管脚状态的不确定情况发生。

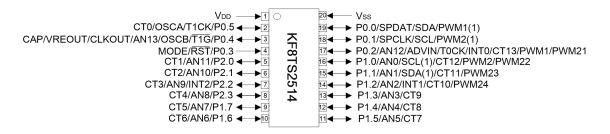
芯片的管脚

KF8TS25XX 芯片提供宽范围的输入管脚电平,用户输入高电平应大于 VIH 的最小值,低电平应小于 VIL 的最大值,以免波动噪声进入芯片。对于未使用的输入/输出管脚,建议用户设为输入状态,并通过电阻上拉至电源或下拉至地,或设置为输出管脚,输出固定电平并浮空。对未使用的管脚处理因应用系统而异,具体遵循应用系统的相关规定和说明。

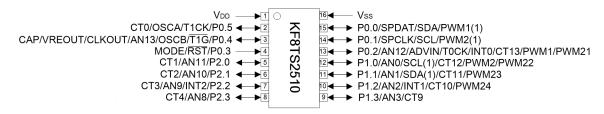
VDD 和 VSS 之间需接 104 以上的电容, 电容尽量靠近 MCU 芯片的 VDD 引脚。

芯片的低功耗设计

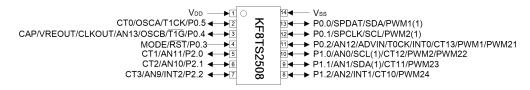
KF8TS25XX 芯片提供低功耗设计模式,用户在实际应用中可根据应用系统的要求采用各种不同的低功耗模式,包括系统工作时钟的选择和休眠模式的选择等等。


芯片的开发环境

KF8TS25XX 芯片提供完整的软/硬件开发环境,并受知识产权保护。选择上海芯旺微电子有限公司指定的的汇编器、编译器、编程器、硬件仿真器开发环境,必须遵循与芯片相关的规定和说明。

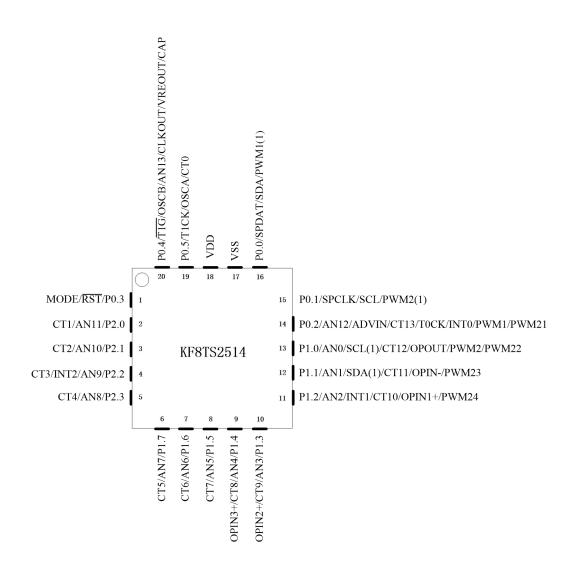


引脚示意图


20 引脚示意图:

16 引脚示意图:

14 引脚示意图:



注: 1、用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.3未用,应外接上拉电阻,并对地下拉一个电容。

2、KF8TS25xx的14脚芯片需将TR2<3>和TR1<7:3>设置为0;KF8TS25xx的16引脚芯片需将TR1<7:4>设置为0。

QFN-20 引脚示意图:

注: 1、用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.3未用,应外接上拉电阻,并对地下拉一个电容。

2、KF8TS25xx的14脚芯片需将TR2<3>和TR1<7:3>设置为0;KF8TS25xx的16引脚芯片需将TR1<7:4>设置为0。

引脚功能说明

引脚名								
SOIC 14	SOIC 16	SOIC 20	QFN 20	I/O	引脚功能	引脚说明 		
1	1	1	18	P	VDD	直流电源		
					P0.5	带上拉和电平变化中断功能的双向输入输出端口		
		•	10	1/0	T1CK	T1 时钟输入		
2	2	2	19	I/O	CT0	电容触摸通道 0		
					OSCA	外部振荡器输入引脚 A		
					P0.4	带上拉和电平变化中断功能的双向输入输出端口		
					T1G	T1 门控信号输入		
					OSCB	外部振荡器输入引脚 B		
3	3	3	20	I/O	VREOUT	内部参考电压输出端		
					AN13	ADC 输入通道 13		
					CAP	触摸按键参考电容输入脚,接入范围为 0pF~10pF		
					CLKOUT	系统时钟输出		
					P0.3	带电平变化中断功能的输入端口		
4	4	4	1	I	MODE	编程模式选择		
					RST	主复位信号输入		
				P2.0	带上拉功能的双向输入输出端口			
5	5	5	2	I/O	AN11	ADC 输入通道 11		
					CT1	电容触摸通道 1		
					P2.1	带上拉功能的双向输入输出端口		
6	6	6	3	I/O	AN10	ADC 输入通道 10		
					CT2	电容触摸通道 2		
					P2.2	带上拉功能的双向输入输出端口		
	7	7	4	1/0	INT2	外部中断 2 输入端		
7	7	7	4	I/O	AN9	ADC 输入通道 9		
					CT3	电容触摸通道 3		
					P2.3	带上拉功能的双向输入输出端口		
-	8	8	5	I/O	AN8	ADC 输入通道 8		
					CT4	电容触摸通道 4		
					P1.7	带上拉功能的双向输入输出端口		
-	-	9	6	I/O	CT5	电容触摸通道 5		
					AN7	ADC 输入通道 7		
					P1.6	带上拉功能的双向输入输出端口		
-	-	10	7	I/O	CT6	电容触摸通道 6		
					AN6	ADC 输入通道 6		
		1 1	0	1/0	P1.5	带上拉功能的双向输入输出端口		
_		11	8	I/O	CT7	电容触摸通道 7		

					AN5	ADC 输入通道 5
					P1.4	带上拉功能的双向输入输出端口
-	-	12	9	I/O	CT8	电容触摸通道 8
					AN4	ADC 输入通道 4
					P1.3	带上拉功能的双向输入输出端口
-	9	13	10	I/O	AN3	ADC 输入通道 3
					CT9	电容触摸通道 9
					P1.2	带上拉功能的双向输入输出端口
					AN2	ADC 输入通道 2
8	10	14	11	I/O	INT1	外部中断 1 输入
					PWM24	PWM24 输出端
					CT10	电容触摸通道 10
					P1.1	带上拉功能的双向输入输出端口
					AN1	ADC 输入通道 1
9	11	15	12	I/O	SDA (1)	IIC 数据输入/输出
					PWM23	PWM23 输出端
					CT11	电容触摸通道 11
	12	16	13	I/O	P1.0	带上拉功能的双向输入输出端口
					AN0	ADC 输入通道 0
10					SCL (1)	IIC 时钟脚
10					PWM2	PWM2 输出端
					PWM22	PWM22 输出端
					CT12	电容触摸通道 12
					P0.2	带上拉和电平变化中断功能的双向输入输出端口
					AN12	ADC 输入通道 12
					ADVRIN	AD 外部参考电压输入端
1,	10	1.7	1.4	1/0	T0CK	T0 时钟输入
11	13	17	14	I/O	INT0	外部中断 0 输入端
					PWM1	PWM1 输出端
					PWM21	PWM21 输出端
					CT13	电容触摸通道 13
					P0.1	带上拉和电平变化中断功能的双向输入输出端口
.					SCL	I2C 时钟脚
12	14	18	15	I/O	PWM2	PWM2 输出端
					SPCLK	编程时钟输入
					P0.0	带上拉和电平变化中断功能的双向输入输出端口
					SDA	IIC 数据输入/输出脚
13	15	19	16	I/O	PWM1(1)	PWM1 输出端
					SPDAT	编程数据输入/输出
14	16	20	17	P	VSS	地,0V 参考点
14	16	20	17	P	VSS	地,0V 参考点

目录

产品订购信息	2
KF8TS25XX 芯片使用注意事项	3
引脚示意图	5
引脚功能说明	7
1 系统概述	15
1.1 芯片特征	16
1.2 系统框图	
1.3 存储器	
1.4 系统时钟	20
1.4.1 时钟模块相关寄存器	21
1.4.1.1 系统频率控制寄存器 OSCCTL	21
1.4.1.2 系统时钟标志寄存器 OSCSTA	
1.4.2 上电延时	22
1.4.3 内部高频时钟 INTHF	22
1.4.4 内部低频时钟 INTLF	22
1.4.5 外部高频时钟 EXTHF	23
1.4.6 外部低频时钟 EXTLF	23
1.4.7 时钟切换和时钟信号同步	23
1.4.8 双速启动模式	24
1.4.9 双速启动过程	25
1.4.10 外部时钟故障检测	25
1.4.11 时钟故障保护处理	
1.5 芯片初始化	
1.6 配置位	28
1.7 在线串行编程	29
2 I/O 端口介绍	30
2.1 I/O 端口的读写	31
2.2 I/O 端口数字输入电平类型	
2.3 P0 □	
2.3.1 P0 口相关的寄存器	
2.3.1.1 P0 口状态寄存器(P0)	33
2.3.1.2 P0 口输出锁存寄存器(P0LR)	
2.3.1.3 P0 口方向控制寄存器(TR0)	
2.3.1.4 P0 上拉功能控制寄存器(PUR0)	34
2.3.1.5 电平变化中断控制寄存器(IOCL)	
2.3.2 P0 口各引脚内部原理功能框图	
2.4 P1 □	38

	2.4.1 P1 口相关的寄存器	38
	2.4.1.1 P1 口状态寄存器(P1)	39
	2.4.1.2 P1 口输出锁存寄存器(P1LR)	39
	2.4.1.3 P1 口方向控制寄存器(TR1)	39
	2.4.1.4 P1 口上拉功能控制寄存器(PUR1)	40
	2.4.2 P1 口原理功能框图	41
	2.5 P2 □	42
	2.5.1 P2 口相关的寄存器	42
	2.5.1.1 P2 口状态寄存器(P2)	42
	2.5.1.2 P2 口输出锁存寄存器(P2LR)	43
	2.5.1.3 P2 口方向控制寄存器(TR2)	43
	2.5.1.4 P2 口上拉功能控制寄存器(PUR2)	43
	2.5.2 P2 口原理功能框图	44
3	存储器	45
	3.1 程序存储器(ROM)区	
	3.2 数据存储器(RAM)区	
	3.2.1 通用寄存器区	
	3.2.2 特殊功能寄存器(SFR)区	
	3.3 FLASH 自写	
	3.3.1 寄存器 NVMDATAH/L	
	3.3.2 寄存器 NVMADDRH/L	
	3.3.3 写 Flash	
	3.3.4 读 Flash	
	3.4 寄存器组 RN	
	3.5 ID 地址单元	
4	「汇编指令及寻址方式	53
	4.1 寻址方式	
	4.1.1 寄存器寻址	53
	4.1.2 直接寻址	53
	4.1.3 立即数寻址	53
	4.1.4 寄存器间接寻址	
	4.1.5 位寻址	
	4.2 汇编指令	54
5	,中断	55
	5.1 中断相关的寄存器	58
	5.1.1 中断控制寄存器 INTCTL	
	5.1.2 中断使能寄存器 EIE1	
	5.1.3 中断使能寄存器 EIE2	
	5.1.4 中断使能寄存器 EIE3	
	5.1.5 中断标志寄存器 EIF1	
	5.1.6 中断标志寄存器 EIF2	

	5.1.7 中断标志寄存器 EIF3	62
	5.1.8 中断优先级控制寄存器 IP0	62
	5.1.9 中断优先级控制寄存器 IP1	63
	5.1.10 中断优先级控制寄存器 IP2	63
	5.1.11 中断优先级控制寄存器 IP3	64
	5.1.12 电源控制寄存器 PCTL	64
	5.1.13 INT 中断沿选择寄存器 INTEDGCTL	65
	5.1.14 中断响应	66
	5.2 INT 中断	67
	5.2.1 INTO 中断	67
	5.2.2 INT1 中断	67
	5.2.3 INT2 中断	67
	5.3 定时器中断	68
	5.4 P0 口中断	68
	5.5 PWM 中断	68
	5.6 中断现场保护	68
6	5 定时器/计数器	69
	6.1 定时器/计数器 T0	69
	6.1.1 TO 原理框图	
	6.1.2 T0 相关的寄存器	
	6.1.2.1 OPTR 选择寄存器	
	6.1.3 定时模式	
	6.1.4 计数模式	
	6.1.5 T0 的使用	
	6.2 定时器/计数器 T1	
	6.2.1 T1 原理框图	
	6.2.2 T1 时钟	72
	6.2.3 T1 相关的寄存器	73
	6.2.3.1 T1 控制寄存器	73
	6.2.4 定时模式	74
	6.2.5 计数模式	74
	6.2.6 T1 重载功能	74
	6.2.7 T1 在休眠模式下的运行	74
	6.2.8 T1 分配给 PWM1/2	75
	6.3 定时器 T3	76
	6.3.1 T3 原理框图	76
	6.3.2 T3 相关寄存器	76
	6.3.2.1 T3 控制寄存器 T3CTL	76
	6.3.2.2 电容触摸控制寄存器 0 (CTCTL0)	77
	6.3.3 T3 中断	78
	6.3.4 T3 的使用	78
	6.4 定时器/计数器 T4	79
	6.4.1 T4 原理框图	79

6.4.2 T4 相关寄存器	79
6.4.2.1 T4 控制寄存器	79
6.4.2.2 T4 预分频器	80
6.4.2.3 T4 计数时钟选择	80
6.4.3 T4 重载功能	80
6.4.4 T4 中断	81
6.4.5 T4 工作在休眠模式	81
7 模数(A/D)转换模块	82
7.1 与 A/D 相关的寄存器	82
7.1.1 A/D 控制寄存器 0(ADCCTL0)	82
7.1.2 A/D 控制寄存器 1(ADCCTL1)	83
7.1.3 模拟/数字口选择寄存器(ANSEL/H)	84
7.2 通道的选择	84
7.3 模拟输入口的配置	84
7.4 A/D 转换参考电压的选择	85
7.4.1 内部参考电压 V _{REF}	85
7.4.2 参考电压寄存器(VRECTL)	85
7.5 转换时钟的选择	86
7.6 输出格式	86
7.7 A/D 转换的启动和完成	86
7.8 复位的影响	
7.9 使用 A/D 转换器的设置	87
8 PWM 模块	88
8.1 工作原理	88
8.1.1 16 位 PWM 模式	88
8.1.2 8 位 PWM 模式	89
8.2 PWM 相关的寄存器	90
8.2.1 PWM1/2 控制寄存器	90
8.2.2 PWM 周期	
8.2.3 PWM 占空比	
8.3 PWM 分辨率	
8.4 PWM 中断	
8.5 PWM 输出引脚	
8.6 休眠模式下的操作	
8.7 复位的影响	
8.8 PWM 使用方法	93
9 SSCI 模块	94
9.1 概述	
9.2 SSCI 相关寄存器	
9.2.1 SSCI 控制寄存器 0(SSCICTL0)	
9.2.2 SSCI 控制寄存器 1(SSCICTL1)	95

9.2.4 SSCI I E	9.2.3 SSCI 状态寄存器(SSCISTA)	96
9.2.6 模拟/数字口选择寄存器(ANSEH)	9.2.4 SSCI 屏蔽寄存器(SSCIMSK)	97
9.3.1 工作原理	9.2.5 SSCI I2C 地址寄存器(SSCIADD)	98
9.3.1 工作原理 99 9.3.2 12C 从动模式 100 9.3.2.1 寻址 100 9.3.2.2 接收 101 9.3.2.3 发送 102 9.3.2.4 广播呼叫地址支持 102 9.3.3 12C 主控模式 105 9.3.3.1 主控模式支持 105 9.3.3.1 主控模式支持 106 9.3.3.2 12C 主模式操作 106 9.3.3.3 波特率发生器 107 9.3.3.4 12C 主控模式启动条件时序 108 9.3.3.5 12C 主控模式启动条件时序 108 9.3.3.5 12C 主控模式反送 109 9.3.3.7 12C 主控模式发送 109 9.3.3.7 12C 主控模式发送 111 9.3.3.8 应答序列时序 112 9.3.3.9 停止条件序列 113 9.3.3.1 时钟仲裁 114 9.3.4 多主控器模式 114 9.3.4 多主控器模式 114 9.3.4 多主控器模式 115 9.3.4.1 多主机通信,总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 117 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触模相关等存器 120 10 电容触模相关寄存器 122 10.2 电容触模控制寄存器 122 10.2 电容触模控制寄存器 1 (CTCTL1) 123 10.2.3 电容触模控制寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VDAC) 125 10.3 触模中断 125 10.4 触摸的使用 125	9.2.6 模拟/数字口选择寄存器(ANSEH)	98
9.3.2.1 寻址	9.3 I2C 模式	99
9.3.2.1 寻址	9.3.1 工作原理	99
9.3.2.2 接收 101 9.3.2.3 发送 102 9.3.2.4 广播呼叫地址支持	9.3.2 I2C 从动模式	100
9.3.2.3 发送	9.3.2.1 寻址	100
9.3.2.4 广播呼叫地址支持	9.3.2.2 接收	101
9.3.3 12C 主控模式支持	9.3.2.3 发送	102
9.3.3.1 主控模式支持	9.3.2.4 广播呼叫地址支持	104
9.3.3.2 I2C 主模式操作	9.3.3 I2C 主控模式	105
9.3.3.3 波特率发生器	9.3.3.1 主控模式支持	105
9.3.3.4 12C 主控模式启动条件时序 108 9.3.3.5 12C 主控模式重复启动条件时序 108 9.3.3.6 12C 主控模式发送 109 9.3.3.7 12C 主控模式接收 111 9.3.3.8 应答序列时序 112 9.3.3.9 停止条件序列 113 9.3.3.10 时钟仲裁 114 9.3.4 多主控器模式 114 9.3.4 多主拉器模式 114 9.3.4.1 多主机通信,总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 117 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸控制寄存器 122 10.2.1 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.2 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.3 电容触摸控制寄存器 2 (CTCTL2) 123 10.2.4 电阻分压比设置寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VDAC) 125 10.2.6 电阻分压设置寄存器 (VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.1 周期模式 126	9.3.3.2 I2C 主模式操作	106
9.3.3.5 12C 主控模式重复启动条件时序 108 9.3.3.6 12C 主控模式发送	9.3.3.3 波特率发生器	107
9.3.3.6 I2C 主控模式发送 109 9.3.3.7 I2C 主控模式接收 111 9.3.3.8 应答序列时序 112 9.3.3.9 停止条件序列 113 9.3.3.10 时钟仲裁 114 9.3.4.5 圣主松器模式 114 9.3.4.1 多主机通信, 总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 117 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸模块 121 10.2 电容触摸控制寄存器 (CTCTLO) 122 10.2.1 电容触摸控制寄存器 (CTCTLIO) 122 10.2.3 电容触摸控制寄存器 (CTCTLIO) 122 10.2.3 电容触摸控制寄存器 (VRES) 125 10.2.4 电阻分压比设置寄存器 (VRES) 125 10.2.6 电阻分压迟设置寄存器 (VRES) 125 10.2.6 电阻分压迟设置寄存器 (VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.1 再期模式 125	9.3.3.4 I2C 主控模式启动条件时序	108
9.3.3.7 I2C 主控模式接收 111 9.3.3.8 应答序列时序 112 9.3.3.9 停止条件序列 113 9.3.3.10 时钟仲裁 114 9.3.4.5 主控器模式 114 9.3.4.1 多主机通信,总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 117 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸模块 121 10.2 电容触摸控制寄存器 (CTCTLO) 122 10.2.1 电容触摸控制寄存器 1(CTCTLI) 123 10.2.3 电容触摸控制寄存器 (VRES) 125 10.2.4 电阻分压比设置寄存器 (VRES) 125 10.2.6 电阻分压比设置寄存器 (VRES) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.1 用期模式 125 10.4.1 周期模式 125	9.3.3.5 I2C 主控模式重复启动条件时序	108
9.3.3.8 应答序列时序 112 9.3.3.9 停止条件序列 113 9.3.3.10 时钟仲裁 114 9.3.4. 多主控器模式 114 9.3.4.1 多主机通信,总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 119 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸校即原理 121 10.2 电容触摸控制寄存器 0(CTCTL0) 122 10.2.1 电容触摸控制寄存器 1(CTCTL1) 123 10.2.2 电容触摸控制寄存器 2(CTCTL2) 123 10.2.4 电阻分压比设置寄存器(VDAC) 124 10.2.5 电阻分压比设置寄存器(VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.2 周期扫描模式 125 10.4.2 周期扫描模式 126	9.3.3.6 I2C 主控模式发送	109
9.3.3.9 停止条件序列	9.3.3.7 I2C 主控模式接收	111
9.3.3.10 时钟仲裁 114 9.3.4 多主控器模式 114 9.3.4.1 多主机通信,总线冲突与总线仲裁 115 9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 119 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸的原理 121 10.2 电容触摸控制寄存器 122 10.2.1 电容触摸控制寄存器 0 (CTCTL0) 122 10.2.2 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.3 电容触摸控制寄存器 2 (CTCTL2) 123 10.2.4 电阻分压比设置寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 125 10.4.2 周期扫描模式 126	9.3.3.8 应答序列时序	112
9.3.4 多主控器模式	9.3.3.9 停止条件序列	113
9.3.4.1 多主机通信,总线冲突与总线仲裁	9.3.3.10 时钟仲裁	114
9.3.4.2 启动条件期间的总线冲突 115 9.3.4.3 重复启动条件期间的总线冲突 117 9.3.4.4 停止条件期间的总线冲突 119 9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸的原理 121 10.2 电容触摸控制寄存器 122 10.2.1 电容触摸控制寄存器 0 (CTCTL0) 122 10.2.2 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.3 电容触摸控制寄存器 2 (CTCTL2) 123 10.2.4 电阻分压比设置寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VRES) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 125 10.4.2 周期扫描模式 126	9.3.4 多主控器模式	114
9.3.4.3 重复启动条件期间的总线冲突1179.3.4.4 停止条件期间的总线冲突1199.3.4.5 SSCI 屏蔽寄存器12010 电容触摸模块12110.1 电容触摸的原理12110.2 电容触摸控制寄存器 0 (CTCTL0)12210.2.1 电容触摸控制寄存器 1 (CTCTL1)12310.2.2 电容触摸控制寄存器 2 (CTCTL2)12310.2.3 电容触摸控制寄存器 (VDAC)12410.2.5 电阻分压比设置寄存器 (VRES)12510.2.6 电阻分压源选择寄存器 (VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式126	9.3.4.1 多主机通信,总线冲突与总线仲裁	115
9.3.4.4 停止条件期间的总线冲突1199.3.4.5 SSCI 屏蔽寄存器12010 电容触摸模块12110.1 电容触摸的原理12110.2 电容触摸控制寄存器12210.2.1 电容触摸控制寄存器 0 (CTCTL0)12210.2.2 电容触摸控制寄存器 1 (CTCTL1)12310.2.3 电容触摸控制寄存器 2 (CTCTL2)12310.2.4 电阻分压比设置寄存器 (VDAC)12410.2.5 电阻分压比设置寄存器 (VRES)12510.2.6 电阻分压源选择寄存器 (VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式12510.4.2 周期扫描模式126	9.3.4.2 启动条件期间的总线冲突	115
9.3.4.5 SSCI 屏蔽寄存器 120 10 电容触摸模块 121 10.1 电容触摸的原理 121 10.2 电容触摸相关寄存器 122 10.2.1 电容触摸控制寄存器 0 (CTCTL0) 122 10.2.2 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.3 电容触摸控制寄存器 2 (CTCTL2) 123 10.2.4 电阻分压比设置寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VRES) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	9.3.4.3 重复启动条件期间的总线冲突	117
10 电容触摸模块 121 10.1 电容触摸的原理 121 10.2 电容触摸相关寄存器 122 10.2.1 电容触摸控制寄存器 0 (CTCTL0) 122 10.2.2 电容触摸控制寄存器 1 (CTCTL1) 123 10.2.3 电容触摸控制寄存器 2 (CTCTL2) 123 10.2.4 电阻分压比设置寄存器 (VDAC) 124 10.2.5 电阻分压比设置寄存器 (VRES) 125 10.2 6 电阻分压源选择寄存器 (VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	9.3.4.4 停止条件期间的总线冲突	119
10.1 电容触摸的原理12110.2 电容触摸相关寄存器12210.2.1 电容触摸控制寄存器 0 (CTCTL0)12210.2.2 电容触摸控制寄存器 1 (CTCTL1)12310.2.3 电容触摸控制寄存器 2 (CTCTL2)12310.2.4 电阻分压比设置寄存器 (VDAC)12410.2.5 电阻分压比设置寄存器 (VRES)12510.2.6 电阻分压源选择寄存器 (VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式126	9.3.4.5 SSCI 屏蔽寄存器	120
10.2 电容触摸相关寄存器12210.2.1 电容触摸控制寄存器 0 (CTCTL0)12210.2.2 电容触摸控制寄存器 1 (CTCTL1)12310.2.3 电容触摸控制寄存器 2 (CTCTL2)12310.2.4 电阻分压比设置寄存器 (VDAC)12410.2.5 电阻分压比设置寄存器 (VRES)12510.2.6 电阻分压源选择寄存器 (VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式126	10 电容触摸模块	121
10.2.1 电容触摸控制寄存器 0(CTCTL0)12210.2.2 电容触摸控制寄存器 1(CTCTL1)12310.2.3 电容触摸控制寄存器 2(CTCTL2)12310.2.4 电阻分压比设置寄存器 (VDAC)12410.2.5 电阻分压比设置寄存器 (VRES)12510.2.6 电阻分压源选择寄存器 (VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式126	10.1 电容触摸的原理	121
10.2.2 电容触摸控制寄存器 1(CTCTL1)12310.2.3 电容触摸控制寄存器 2(CTCTL2)12310.2.4 电阻分压比设置寄存器(VDAC)12410.2.5 电阻分压比设置寄存器(VRES)12510.2.6 电阻分压源选择寄存器(VDACS)12510.3 触摸中断12510.4 触摸的使用12510.4.1 单周期模式12510.4.2 周期扫描模式126	10.2 电容触摸相关寄存器	122
10.2.3 电容触摸控制寄存器 2(CTCTL2) 123 10.2.4 电阻分压比设置寄存器(VDAC) 124 10.2.5 电阻分压比设置寄存器(VRES) 125 10.2.6 电阻分压源选择寄存器(VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	10.2.1 电容触摸控制寄存器 0 (CTCTL0)	122
10.2.4 电阻分压比设置寄存器(VDAC) 124 10.2.5 电阻分压比设置寄存器(VRES) 125 10.2.6 电阻分压源选择寄存器(VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	10.2.2 电容触摸控制寄存器 1(CTCTL1)	123
10.2.5 电阻分压比设置寄存器(VRES) 125 10.2.6 电阻分压源选择寄存器(VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	10.2.3 电容触摸控制寄存器 2 (CTCTL2)	123
10.2.6 电阻分压源选择寄存器(VDACS) 125 10.3 触摸中断 125 10.4 触摸的使用 125 10.4.1 单周期模式 125 10.4.2 周期扫描模式 126	10.2.4 电阻分压比设置寄存器(VDAC)	124
10.3 触摸中断	10.2.5 电阻分压比设置寄存器(VRES)	125
10.4 触摸的使用	10.2.6 电阻分压源选择寄存器(VDACS)	125
10.4.1 单周期模式	10.3 触摸中断	125
10.4.2 周期扫描模式126	10.4 触摸的使用	125
	10.4.1 单周期模式	125
11 复位127	10.4.2 周期扫描模式	126
	11 复位	127

11.1 电源控制状态寄存器(PCTL)	127
11.2 上电复位(POR)	128
11.3 WDT 复位	128
11.4 RST 复位	128
11.5 欠压检测复位(LVR)	129
11.6 上电延时定时器	129
11.7 不同复位条件下对寄存器的影响	130
12 休眠模式	132
13 看门狗定时器 WDT	133
13.1 看门狗相关寄存器	133
13.1.1 WDT 预分频选择寄存器	133
13.2 看门狗的开启关闭方式	
13.3 看门狗的清狗方式	
13.4 看门狗 WDT 的周期	134
14 电气规范	135
14.1 极限参数值	135
14.2 HFINT 的频率精度与器件 VDD 和温度之间的关系	136
14.3 静态电流特性	
14.4 外设电流特性	
14.5 I/O 端口特性	139
14.6 芯片供电电压特性	
14.7 A/D 转换器(ADC)特性	140
14.8 内部参考电压模块特性	141
14.9 ESD 和 LATCH UP	141
15 直流特性图表	142
16 封装信息	148
附录 1 特殊功能寄存器 (SFR) 功能汇总	151
附录 2 汇编指令集	153
附录 3 寄存器全称表	155
产品标识体系	157
版本说明	158
ROHS 认证	159
声 田 及 绀 生 网 终	160

1 系统概述

KF8TS2508/2510/2514 为哈佛结构的精简指令 CPU。在这种结构中,程序和数据总线是相互独立的。指令字节长度为 16 位,大多数指令能在一个机器周期内执行完成。一共有 73 条指令,效率高,容易进行指令扩展。

KF8TS2508/2510/2514 芯片内集成了多种外设,包括 1 个 8 位定时器/计数器 T0、1 个 16 位定时器/计数器 T1、1 个 16 位的定时器 T3、一个 16 位定时/计数器 T4、1 个 12 位 8/10/14 通道 AD 模块、2 路 8 位的 PWM 模块、一个 8/10/14 通道电容触摸模块、1 个 I2C 模块、内部参考电压模块、硬件看门狗和低电压检测及低电压复位模块等。

芯片内集成了 400×8 位的用户数据存储器和 4K×16 位的程序存储器。

注: KF8TS2508 带有 8 个 AD 通道、8 个电容触摸通道; KF8TS2510 带有 10 个 AD 通道、10 个电容触摸通道; KF8TS2514 带有 14 个 AD 通道、14 个电容触摸通道;

1.1 芯片特征

● CPU

高性能哈佛结构的 RISC CPU

73 条精简指令

支持中断优先级处理,共16个中断源

复位向量位于 0000H

两级中断可选,用不同的入口地址(高 0004H,低 0014H)

支持 16 级硬件堆栈

工作频率默认内部高频,内部高频范围 62.5kHz~16MHz,软件可选时钟源及分频

● 存储器

8K 字节(4K×16 位)FLASH 程序存储器 (384+16)×8 位的数据存储器 工作寄存器组 R0~R7 FLASH 可经受 100 000 次写操作

● 特殊功能

内嵌上电复位电路 低电压检测及低电压复位 硬件看门狗 内部高频时钟精度 16MHz±1%(常温) 内部可校正低频 32kHz 时钟 2/3/4V 可选内部参考电压 支持在线串行编程 低功耗休眠模式

● I/O 口配置

输入输出口:除 P0.3 只能作为输入口外其它端口均为双向输入输出口内置上拉功能:P0/P1/P2 口带有弱上拉功能(P0.3 除外)电平变化中断:P0 口均有电平变化中断功能IO 口数字输入类型:P0/P1/P2 口为 SMIT 型

● 定时器/计数器

定时器 0: 带有 8 位预分频器的 8 位定时器/计数器

定时器 1: 带门控和预分频器的 16 位定时器/计数器

定时器 3: 时钟源可选的 16 位定时器

定时器 4: 带有重载功能、预分频及时钟源多选的的 16 位定时器/计数器

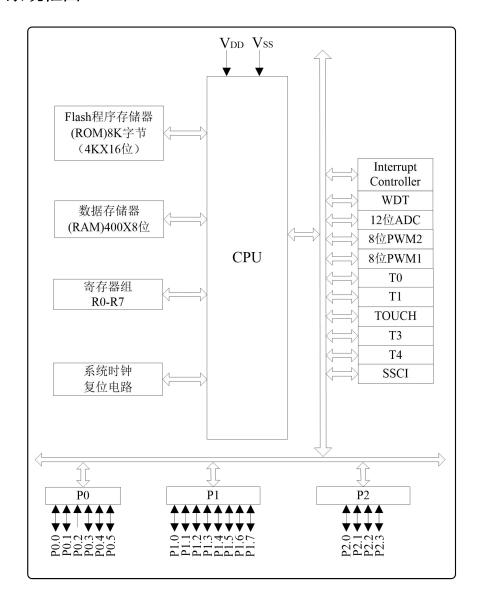
● 其它外设

2路8位脉宽调制PWM模块

1 个 12 位 8/10/14 通道 ADC 模块

1 个 8/10/14 通道的触摸模块

1 个 I2C 模块



● 工作条件

工作电压: 2.6V~5.5V 工作温度范围: -30℃~85℃

1.2 系统框图

注: KF8TS2508 带有 14 个引脚; KF8TS2510 带有 16 个引脚; KF8TS2514 带有 20 个引脚。

1.3 存储器

KF8TS2508/2510/2514单片机的存储器包含:程序存储器(ROM)和数据存储器(RAM)。

KF8TS2508/2510/2514 的程序存储器空间为 8K 字节(4K×16 位),寻址范围为 0000H~FFFH,可擦写次数为 10 万次。数据存储器分为特殊寄存器区(SFR)和通用存储器区,其中通用存储器区包括通用存储器区 0 至通用存储器区 2。通用存储器区 0 至通用存储器区 2 均有 128×8 位的存储单元,各区的地址请查阅第 3 章。

有关以上各种存储器的具体介绍请参考第3章。

1.4 系统时钟

系统时钟是由系统时钟源分频而来。本芯片中一个机器周期等于四个系统周期,如图 1.1 所示。本芯片除执行部分跳转指令需要两个机器周期外,其余指令仅需要一个机器周期。

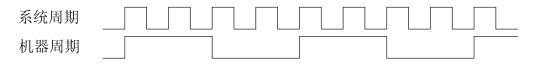


图 1.1 机器周期

KF8TS2508/2510/2514 系列单片机提供 4 个可选系统时钟源:

INTHF:以内部高频振荡器为系统时钟源;

INTLF:以内部低频振荡器为系统时钟源;

EXTHF:标准晶振、陶瓷谐振器或外接 16MHz~125kHz 的时钟源工作;

EXTLF:外接 32.768kHz 的钟表晶振作为系统时钟源。

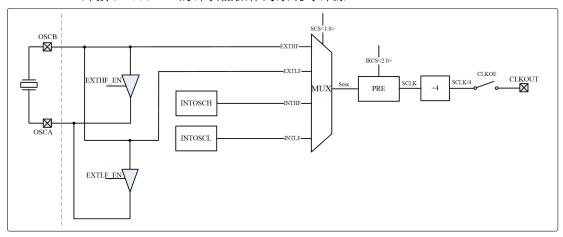


图 1.2 时钟模块原理框图

KF8TS2508/2510/2514 系列单片机的系统时钟源可以配置为 EXTHF、EXTLF、INTHF 或者 INTLF。

外部高频时钟和外部低频时钟共用外部时钟引脚,不能同时使用两个外部时钟源。

名称	定义即描述
Sosc	振荡器时钟源
SCLK	系统时钟
SCLK/4	机器时钟
T _{sys} 或 Tsys	系统时钟周期
T _{mc} 或 Tmc	机器周期
INTOSCH(INTHF)	内部高频振荡器(时钟源)
TINTHF	内部高频振荡器周期
INTOSCL(INTLF)	内部低频振荡器 (时钟源)
EXTOSCH(EXTHF	外部高频振荡器(时钟源)
EXTOSCL(EXTLF)	外部低频振荡器 (时钟源)
OSC	定义为4个振荡器的集合

表 1-1 与时钟有关的名词表述

1.4.1 时钟模块相关寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
28H	OSCSTA	-	OSTS	HTS	LTS	-	-	SCF1	SCF0

1.4.1.1 系统频率控制寄存器 OSCCTL

寄存器1.2: OSCCTL系统频率控制寄存器(地址:2FH)

_	bit7							bit0
复位值 0010 0000	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CLKOE: 系统时钟输出使能位

1=使能系统时钟输出

0=禁止系统时钟输出

IRCS<2:0>: 时钟频率选择位

111=1:1(选择内部高频时钟为 16MHz)

110=1:2 (选择内部高频时钟为 8MHz)

101=1:4 (选择内部高频时钟为 4MHz)

100=1:8 (选择内部高频时钟为 2MHz)

011=1:16 (选择内部高频时钟为 1MHz) 010=1:32 (默认,选择内部高频时钟为 500kHz)

001=1:64 (选择内部高频时钟为 250kHz)

000=1:256 (选择内部高频时钟为 62.5kHz)

SCS<1:0>: 系统时钟选择位

00=选择内部高频时钟

01=选择内部低频时钟

10=选择外部低频时钟

11=选择外部高频时钟

IESO: 双速模式使能位

0=禁止双速功能

1=启动双速功能

FSCM: 外部时钟故障检测使能位

0=禁止故障检测功能

1=使能故障检测功能

图注: R=可读 W=可写 -=未用 U=未实现位

1.4.1.2 系统时钟标志寄存器 OSCSTA

OSCSTA系统时钟标志寄存器(地址:28H)

 支位值 0110 --00
 OSTS
 HTS
 LTS
 SCF1
 SCF0

 R
 R
 R
 R
 R
 U
 U
 R
 R

OSTS: 内外时钟标志位

0=系统时钟为外部时钟

1=系统时钟为内部时钟

HTS: 内部高频时钟稳定位

0=内部高频时钟未稳定

1=内部高频时钟稳定

LTS: 内部低频时钟稳定位

0=内部低频时钟未稳定 1=内部低频时钟稳定

SCF<1:0>: 系统时钟源标志位

00=当前系统时钟源为内部高频时钟

01=当前系统时钟源为内部低频时钟

10=当前系统时钟源为外部低频时钟

11=当前系统时钟源为外部高频时钟

图注: R=可读 W=可写 -=未用 U=未实现位

1.4.2 上电延时

KF8TS2508/2510/2514 系列单片机的上电延时可以通过配置位 PWRT 设置,上电延时计数时钟 PWRTCLK 为内部低频时钟。

当 PWRT =1 时,上电延时关闭;

当 $\overline{\text{PWRT}} = 0$ 时,上电延时打开,延时时间如下: $Tpwrt = \frac{2^{10}}{PWRTCLK}$ 。

1.4.3 内部高频时钟 INTHF

KF8TS2508/2510/2514 系列单片机的内部高频时钟由系统内部高频振荡器提供,时钟频率为 16MHz, 精度为±1%(常温)。

1.4.4 内部低频时钟 INTLF

内部低频时钟 INTLF 由系统内部低频振荡器提供,其振荡器频率为 32KHz,它不仅可以为 SCLK 时钟提供时钟源,而且还可以独立作为时钟信号供外设模块(上电延时定时器、看门狗定时器等)使用。

1.4.5 外部高频时钟 EXTHF

如图 1.3 所示,引脚 OSCA 和引脚 OSCB 可以接外部标准晶体、陶瓷谐振器或外接 $16 MHz \sim 125 kHz$ 的时钟为时钟源。EXTHF 可提供主系统时钟 SCLK。

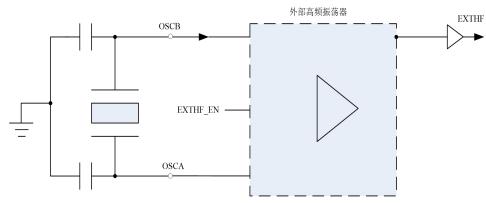


图 1.3 EXTHF 原理图

1.4.6 外部低频时钟 EXTLF

如图 1.4 所示,引脚 OSCA 和引脚 OSCB 接外部钟表石英晶体,主要是以 32.768kHz 的晶体提供时钟源。EXTLF 可提供主系统时钟 SCLK。

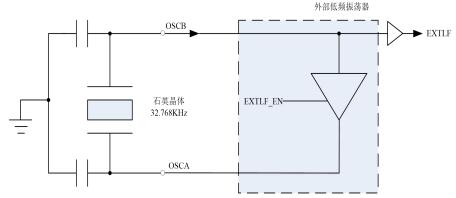


图 1.4 EXTLF 原理图

注: 使用外部低频时钟首先要将 T1CTL 的 T1OSCEN 位置 1。

1.4.7 时钟切换和时钟信号同步

通过设置 OSCCTL 寄存器的 SCS<1:0>位可以选择不同的时钟源作为系统时钟。SCS 位复位为 00, 即选择内部高频时钟源作为单片机的系统时钟。

当系统时钟由外部时钟源切换至内部时钟源时,系统时钟将在 SCS 配置后立即对时钟进行切换。

当配置 SCS 位将系统时钟切换至外部时钟源时(包括 EXTHF 和 EXTLF),振荡器起振定时器 OST 将启动,并以 SCS 位配置的外部时钟为计数时钟开始计数,OST 计数的时间内,系统仍以原来的时钟源作为系统时钟,直到 OST 计数器达到 1024 次计数,系统时钟源切换至 SCS 位配置的外部时钟。

图 1.5 时钟切换流程图

当系统时钟在一个时钟源切换到另一个时钟源时,切换必须同步以避免发生时间竞争。 当选择一个新的时钟源,会发生以下过程。

- (1) 写 SCS 位改变时钟源:如切换至外部时钟源则须经过 OST 计数器 1024 计数:
- (2) 时钟切换电路等待当前时钟的下降沿;
- (3) 时钟 CLK 保持为低电平,时钟切换电路等待新的时钟的上升沿;
- (4) CLK 与新的时钟连接,完成时钟切换。

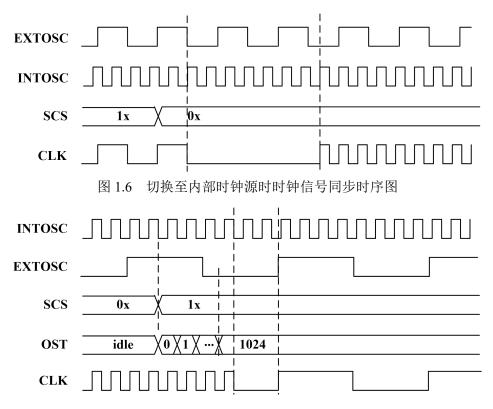


图 1.7 切换至外部时钟源时时钟信号同步时序图

1.4.8 双速启动模式

当系统时钟选择外部时钟进入休眠后,唤醒时,外部时钟需要经过OST 计数器完成1024次计数后才会恢复系统时钟。

双速启动模式通过寄存器 OSCCTL 的 IESO 位设置,当使能双速模式时,MCU 会在唤醒后外部时钟进行 OST 计数期间,通过内部高频时钟作为系统时钟运行,当外部时钟完成 OST 计数后,MCU 会自动将系统时钟从内部高频时钟切换至外部时钟。

1.4.9 双速启动过程

- 1. 从休眠状态唤醒;
- 2. 内部高频振荡器作为时钟源开始执行指令;
- 3. 使能 OST 计数器对外部时钟计数 1024 个时钟周期;
- 4. OST 超时, 等待内部时钟下降沿;
- 5. 系统时钟保持低电平直到新的时钟的下一个下降沿;
- 6. 系统时钟切换到外部时钟源。

1.4.10 外部时钟故障检测

故障保护时钟监视(FSCM)能使器件在振荡器发生故障时继续运行,其可以检测出振荡器起振定时器(OST)延时结束后的任何时刻发生的振荡器故障。

将 OSCCTL 寄存器的 FSCM 位置 1 使能 FSCM,适用于外部振荡器模式。

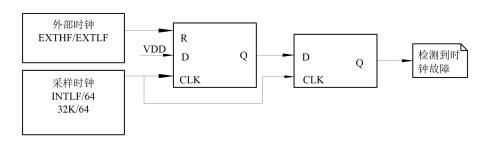


图 1.8 时钟故障检测原理图

FSCM 模块在采样时钟下降沿将第一个寄存器置 1,在外部时钟下降沿将该寄存器复位为 0,由于外部时钟频率远大于采样时钟频率,所以当第一个寄存器刚被采样时钟置 1 不久就被外部时钟复位,经过第二个寄存器(CLK 为采样时钟)后的 Q 值将保持为 0;当发生外部时钟故障时,第一个寄存器由于外部时钟故障而失去复位能力,当采样时钟下降沿到达置 1 后,将一直保持输出为 1,检测到故障。

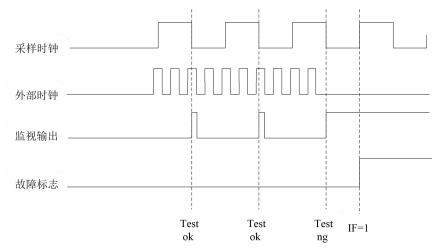


图 1.9 时钟故障检测时序

注: 系统时钟频率实际比采样时钟大很多, 图示为方便分析起见将频率差异减小。

1.4.11 时钟故障保护处理

检测到时钟故障后,系统时钟将自动切换至内部高频时钟源继续工作,分频值由 OSCCTL 寄存器的 IRCS<2:0>设置,直到器件固件成功重启外部振荡器并使时钟重新切换 到外部振荡器为止。

在切换至内部高频时钟源后,时钟故障标志位置 1,如果打开时钟故障中断使能位,程序将进入中断行。

1.5 芯片初始化

用户需在初始化程序中,需要添加相关校准程序,以保证芯片稳定工作。初始化程序如例 1.1 所示。

例1.1 芯片初始化程序

CALL 0XFFF

MOV OSCCALO, RO

NOPZ

NOPZ

CALL 0XFFE

MOV OSCCAL1, R0

NOPZ

NOPZ

CALL 0XFFD

MOV OSCCAL2, R0

NOPZ

NOPZ

CALL 0XFFC

MOV OSCCAL3, R0

NOPZ

NOPZ

CALL 0XFFB

MOV VRECAL1, R0

NOPZ

NOPZ

MOVB #0X01

;切换到存储区1区

CALL 0XFFA

MOV VRECAL2, R0

NOPZ

NOPZ

CALL 0XFF9

MOV VRECAL3, R0

NOPZ

NOPZ

MOVB #0X00

;读取相关校准值后需切换回存储器0区

1.6 配置位

如寄存器 1.2 所示,用户在烧写程序时,在编程器中通过对配置位进行设置,使单片机 启用诸如看门狗、程序代码保护、欠压检测等功能。

CONFIG: 配置字

保留	保留	保留	保留	保留	DEBUG	SWRTE N	保留	CODEP	LVREN	RSTEN	PWRT	WDTEN	保留	保留	保留
bit15							bit8								bit0

DEBUG: 在线调试使能位

1 = 禁止在线调试

0 = 使能在线调试

SWRTEN: FLASH 自写保护使能位

1 = 使能写保护,此时 FLASH 不能写操作,(可读)

0 = 禁止写保护,此时 FLASH 可写,(可读)

CODEP: 代码保护使能位

1 = 禁止程序存储器代码保护

0= 使能程序存储器代码保护

LVREN: 欠压检测功能使能位

1 = 使能欠压检查功能

0 = 禁止欠压检查功能

RSTEN: P0.3/RST 引脚功能选择

1 = P0.3/RST 引脚配置为外部复位输入

0 = P0.3/RST 引脚功能为数字输入口

PWRT: 上电延时使能位

0 = 使能上电延时

1 = 禁止上电延时

WDTEN: 看门狗定时器(WDT)使能位

1 = 使能 WDT

0 = 禁止 WDT

1.7 在线串行编程

如图 1.10 所示,在最终应用电路中可对 KF8TS2508/2510/2514 单片机进行在线串行编程。实现编程仅需要五根线包括: 时钟线(SPCLK)、数据线(SPDAT)、电源线(VDD)、地线(Vss)、编程模式选择线(MODE)。

用户只需确保芯片与编程器按照图 1.11 所示连接方法,即可对其在线编程,调试等。

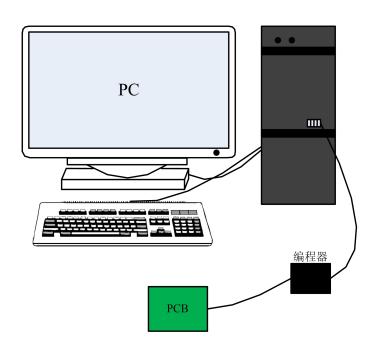


图 1.10 在线调试系统示意图

图 1.11 在线串行编程连接图

2 I/O 端口介绍

KF8TS2508 单片机共有 14 个引脚, 1 脚接电源正极, 14 脚接电源负极, 其余管脚均为 I/O 端口, 包括 PO 口、P1 口和 P2 口。PO 口共有 $P0.0\sim P0.5$ 六个引脚, P1 口共有 $P1.0\sim P1.2$ 三个引脚, P2 口共有 $P2.0\sim P2.2$ 三个引脚。

KF8TS2510 单片机共有 16 个引脚, 1 脚接电源正极, 16 脚接电源负极, 其余管脚均为 I/O 端口, 包括 P0 口、P1 口和 P2 口。P0 口共有 P0.0~P0.5 六个引脚, P1 口共有 P1.0~P1.3 四个引脚, P2 口共有 P2.0~P2.3 四个引脚。

KF8TS2514 单片机共有 20 个引脚,1 脚接电源正极,20 脚接电源负极,其余管脚均为 I/O 端口,包括 P0 口、P1 口和 P2 口。P0 口共有 P0.0~P0.5 六个引脚,P1 口共有 P1.0~P1.7 八个引脚,P2 口共有 P2.0~P2.3 四个引脚。

注: 1、用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.3未用,应外接上拉电阻,并对地下拉一个电容。

2、KF8TS25xx的14脚芯片需将TR2<3>和TR1<7:3>设置为0;KF8TS25xx的16引脚芯片需将TR1<7:4>设置为0。

2.1 **I/O** 端口的读写

读 P0/P1/P2 口时实际为读端口电平,即读 Px(x=0/1/2),写 PxLR(x=0/1/2)寄存器可改变 IO 端口的输出状态。其原理框图如图 2.1 所示:

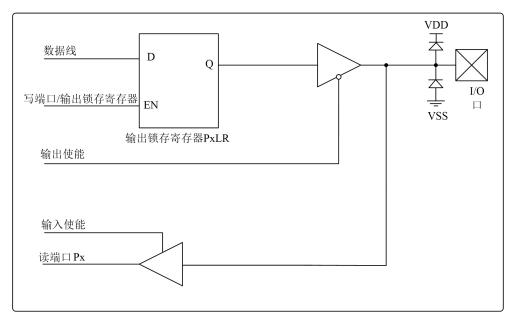


图 2.1 I/O 口读写原理图

注:

- 1、I/O 默认为数字口, 当外设需要作为模拟口时将自动切换为模拟口(AD 除外);
- 2、I/O端口作为AD通道时,需使能对应的ANSx位;
- 3、IO端口作为输出时,可对 PxLR(x=0/1/2)进行赋值(寄存器操作或位操作),以避免读-修改-写指令造成的其它口误操作。

2.2 I/O 端口数字输入电平类型

KF8TS2508/2510/2514 系列单片机的 I/O 端口数字输入电平类型如下:

I/O 端口	数字输入电平类型
P0	SMIT
P1	SMIT
P2	SMIT

2.3 **P0** 口

如引脚示意图所示, P0 口共有 6 个引脚。在线编程时 P0 口的 MODE、SPCLK、SPDAT 作为编程脚使用。P0.3 只能作为输入口且没有上拉功能,其它端口均可作为普通 I/O 口且带有上拉功能,P0 口所有引脚都有电平变化中断功能。各引脚功能表 2-1 所示。

表 2-1 P0 口各引脚功能介绍

		P0.5	带上拉和电平变化中断功能的双向输入输出端口
2	I/O	T1CK	T1 时钟输入
	1/0	CT0	电容触摸通道 0
		OSCA	外部振荡器输入引脚 A
		P0.4	带上拉和电平变化中断功能的双向输入输出端口
		T1G	T1 门控信号输入
		OSCB	外部振荡器输入引脚 B
3	I/O	VREOUT	内部参考电压输出端
		AN13	ADC 输入通道 13
		CAP	触摸按键参考电容输入脚,接入范围为 0pF~10pF
		CLKOUT	系统时钟输出
		P0.3	带电平变化中断功能的输入端口
4	I	RST	主复位信号输入
		MODE	编程模式选择
		P0.2	带上拉和电平变化中断功能的双向输入输出端口
		AN12	ADC 输入通道 12
		ADVRIN	AD 外部参考电压输入端
17	I/O	T0CK	T0 时钟输入
		INT0	外部中断 0 输入端
		PWM1	PWM1 输出端
		CT13	电容触摸通道 13
		P0.1	带上拉和电平变化中断功能的双向输入输出端口
18	I/O	SCL	I2C 时钟脚
10	1/0	PWM2(1)	PWM2 输出端
		SPCLK	编程时钟输入
		P0.0	带上拉和电平变化中断功能的双向输入输出端口
19	I/O	SDA	I2C 数据输入/输出脚
17		PWM1(1)	PWM1 输出端
		SPDAT	编程数据输入/输出

2.3.1 P0 口相关的寄存器

表 2-2 与 P0 端口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
05H	P0	-	-	P05	P04	P03	P02	P01	P00
45H	P0LR	-	ı	P0LR5	P0LR4	-	P0LR2	P0LR1	P0LR0
25H	TR0	-	-	TR05	TR04	TR03	TR02	TR01	TR00
36H	IOCL	-	-	IOCL5	IOCL 4	IOCL 3	IOCL2	IOCL1	IOCL0
35H	PUR0	-	-	PUR05	PUR04	-	PUR02	PUR01	PUR00

2.3.1.1 P0 口状态寄存器(P0)

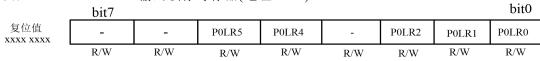
寄存器 P0 各位对应 P0 口相应引脚当前的状态,如寄存器 2.1 所示:

寄存器2.1: P0: P0口状态寄存器(地址: 05H)

	bit7							bit0	
复位值 xx xxxx	-	-	P05	P04	P03	P02	P01	P00	
	U	U	R/W	R/W	R/W	R/W	R/W	R/W	

zP0<5:0>: 读 P0 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平


图注: R=可读 W=可写 -=未用 U=未实现位

注: 读 P0 寄存器实际读 P0 引脚的电平状态。

2.3.1.2 P0 口输出锁存寄存器(P0LR)

寄存器 POLR 是 PO 口输出锁存寄存器。在 PO 口作为输出时,通过写 POLR 寄存器来设置输出 PO 口的状态。

寄存器2.2: POLR: PO口输出锁存寄存器(地址: 45H)

P0LR<5:4>: 写 P0 口输出状态 P0LR<2:0>: 写 P0 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

注: P0.3 不能作输出用。

图注: R=可读 W=可写 -=未用 U=未实现位

1 ...

2.3.1.3 P0 口方向控制寄存器(TR0)

如寄存器 2.3 所示, TR0 为 P0 口方向控制寄存器, 当 TR0 某位置 1 时,将该引脚设置为输入,此时引脚为三态(悬空),TR0 某位清零,对应引脚设置为输出。

寄存器2.3: TR0: P0口方向控制寄存器(地址: 25H)

	bit7							bitU
复位值 1111 1111	-	-	TR05	TR04	TR03	TR02	TR01	TR00
	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

TR0<5:4>: P0 口各引脚方向控制位 TR0<2:0>: P0 口各引脚方向控制位

1 = 对应的引脚设置为输入 0 = 对应的引脚设置为输出

TR03: P0.3 引脚控制位,始终为1

图注: R=可读 W=可写 -=未用 U=未实现位

2.3.1.4 P0 上拉功能控制寄存器(PUR0)

KF8F25XX 中除了 P0.3 口没有内部上拉功能外,其它引脚均带有上拉功能,可通过上拉功能控制寄存器和 OPTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将PUPH(上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.4 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.4: PUR0: P0口弱上拉控制寄存器(地址: 35H)

	bit7							bit0
复位值 1111 -111	-	-	PUR05	PUR04	1	PUR02	PUR01	PUR00
_	R/W	R/W	R/W	R/W	U	R/W	R/W	R/W

PUR0<5:4>: P0 上拉功能使能位 PUR0<2:0>: P0 上拉功能使能位

1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

图注: R=可读 W=可写 -=未用 U=未实现位

2.3.1.5 电平变化中断控制寄存器(IOCL)

P0 口每个引脚都具有电平变化中断功能,当引脚的当前电平与上次读 P0 寄存器时的电平不匹配时将产生电平变化中断。如寄存器 2.5 所示,IOCL 为电平变化中断控制寄存器,将 IOCL 某位置 1 将开启对应引脚的电平变化中断功能,如果该引脚电平发生变化,不管电平变化中断是否使能,电平变化中断标志位(P0IF)都会置 1,如果全局中断使能位(AIE)和电平变化中断使能位(P0IE)都已置 1,则会响应中断进入中断服务子程序。P0 口所有引脚的电平变化中断共用一个标志位 P0IF。

注: 1. 只有将引脚设置为数字输入口时才可开启电平变化中断功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的电平变化中断功能。

2. P0口各引脚的电平变化中断共用一个中断使能位和中断响应标志位。

寄存器2.5: IOCL: 电平变化中断控制寄存器(地址:36H)

	bit7							bit0
复位值 0000 0000	-	-	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IOCL<5:0>: P0 端口引脚电平变化中断使能控制位

1= 使能对应引脚的电平变化中断

0 = 禁止对应引脚的电平变化中断

图注: R=可读 W=可写 -=未用 U=未实现位

注: P0 口电平变化中断是在引脚的当前电平与上次读 P0 寄存器时的电平不匹配时产生的, 所以每次中断标志位(P0IF)置 1 后都要更新 P0 寄存器的值。

电平变化中断参考:

JNB INTCTL,P0IF ;检测是否为P0电平变化中断

JMP POINT

JMP INT RET ;退出中断

P0INT

MOV P0;注意在处理电平变化中断前,这里一定要更新锁存器锁存的值,为了

下一次电平变化中断处理,

...

;接下来为P0电平变化中断的处理

2.3.2 P0 口各引脚内部原理功能框图

如图 2.2、2.3 所示,为 P0 口引脚原理功能框图。

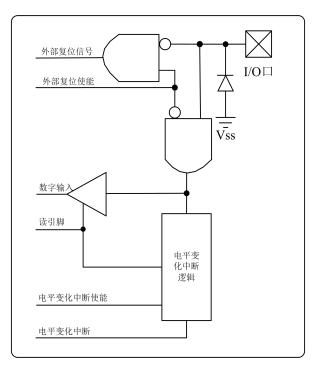
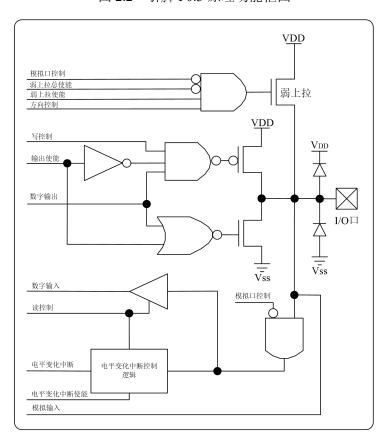



图 2.2 引脚 P0.3 原理功能框图

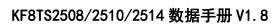


图 2.3 P0.0~P0.2、P0.4~P0.5 口引脚原理框图

2.4 **P1** □

如引脚示意图所示,P1 口具有 8 个引脚。所有管脚均可作为普通 I/O 口,部分引脚可作为 AD 输入通道、触摸输入通道等。引脚功能如表 2-3 所示。

带上拉功能的双向输入输出端口 P1.7 9 I/O CT5 电容触摸通道 5 AN7 ADC 输入通道7 P1.6 带上拉功能的双向输入输出端口 10 I/O CT6 电容触摸通道 6 AN6 ADC 输入通道 6 带上拉功能的双向输入输出端口 P1.5 I/O CT7 电容触摸通道7 11 AN5 ADC 输入通道 5 带上拉功能的双向输入输出端口 P1.4 I/O CT8 电容触摸通道8 12 AN4 ADC 输入通道 4 P1.3 带上拉功能的双向输入输出端口 I/O AN3 ADC 输入通道3 13 CT9 电容触摸通道9 P1.2 带上拉功能的双向输入输出端口 ADC 输入通道 2 AN2 I/O 14 外部中断 1 输入 INT1 CT10 电容触摸通道 10 P1.1 带上拉功能的双向输入输出端口 AN1 ADC 输入通道 1 15 I/O SDA (1) I2C 数据输入/输出 CT11 电容触摸通道 11 带上拉功能的双向输入输出端口 P1.0 AN0 ADC 输入通道 0 16 I/O SCL (1) I2C 时钟脚 PWM2 输出端 PWM2 CT12 电容触摸通道 12

表 2-3 P1 口各引脚功能

2.4.1 P1 口相关的寄存器

表 2-4 与 P1 口相关的寄存器

			10.2-1	7 I I II /	H	11 JH			
地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
07H	P1	P17	P16	P15	P14	P13	P12	P11	P10
47H	P1LR	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
60H	PUR1	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10

2.4.1.1 P1 口状态寄存器(P1)

寄存器 P1 对应端口 P1 引脚作为普通 I/O 口时的状态。如寄存器 2.6 所示

寄存器2.6: P1: P1口状态寄存器(地址: 07H)

_	bit7							bit0
复位值 xxxx xxxx	P17	P16	P15	P14	P13	P12	P11	P10
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

P1<7:0>: 读 P1 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读P1寄存器实际读P1引脚的电平状态。

2.4.1.2 P1 口输出锁存寄存器(P1LR)

寄存器 P1LR 是 P1 口输出锁存寄存器。在 P1 口作为输出时,通过写 P1LR 寄存器来设置输出 P1 口的状态。

寄存器2.7: P1LR: P1口输出锁存寄存器(地址: 47H)

	bit7							bit0	
复位值 xxxx xxxx	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0	
	R/W								

P1LR<7:0>: 写 P1 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

2.4.1.3 P1 口方向控制寄存器(TR1)

如寄存器 2.8 所示,通过将寄存器 TR1 中的某位置 1,将对应管脚设置为输入口。清零设置为输出口,系统复位时,P1 口各引脚默认为输入口。

寄存器2.8: TR1: P1口方向控制寄存器(地址: 27H)

	bit7							bit0
复位值 1111 1111	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
	R/W							

TR1<7:0>: P1 口引脚方向控制位

1=P1 口对应引脚被配置为输入端口 0=P1 口对应引脚被配置为输出端口

KF8TS2508/2510/2514 数据手册 V1.8

图注: R=可读 W=可写 -=未用 U=未实现位

2.4.1.4 P1 口上拉功能控制寄存器(PUR1)

KF8TS2508/2510/2514 中 P1 引脚均带有上拉功能,可通过上拉功能控制寄存器和 OPTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将 PUPH (上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.9 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.9: PUR1: P1口弱上拉控制寄存器(地址: 60H)

	bit7							bit0
复位值 1111 1111	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10
	R/W							

PUR1<7:0>: P1 上拉功能使能位

1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

2.4.2 P1 口原理功能框图

P1 口引脚原理功能如图 2.4 所示:

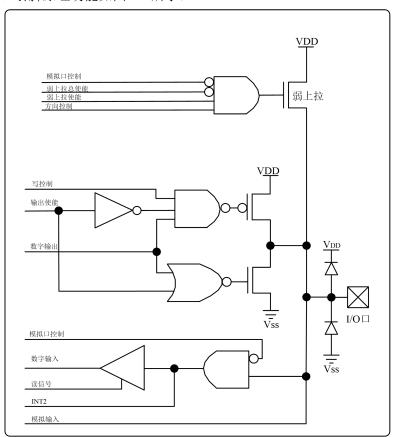


图 2.4 P1 口引脚原理功能框图

2.5 **P2** □

如引脚示意图所示, P2 口共有 4 个引脚。所有管脚均可作为普通 I/O 口、AD 输入通道和触摸输入口。

P2.0 带上拉功能的双向输入输出端口 5 I/O AN11 ADC 输入通道 11 CT1 电容触摸通道1 P2.1 带上拉功能的双向输入输出端口 I/O ADC 输入通道 10 6 AN10 电容触摸通道 2 CT2 P2.2 带上拉功能的双向输入输出端口 INT2 外部中断 2 输入端 7 I/O AN9 ADC输入通道9 电容触摸通道3 CT3 P2.3 带上拉功能的双向输入输出端口 ADC 输入通道 8 8 I/O AN8 电容触摸通道 4 CT4

表 2-5 P2 口各引脚功能

2.5.1 P2 口相关的寄存器

名称

P2

P2LR

TR2

PUR2

地址

06H

46H

26H

61H

位 6 位 5 位 4 位 3 位 2 位 1

- - - P23 P22 P21

- P2LR3 P2LR2 P2LR1

TR23

PUR23

TR22

PUR22

TR21

PUR21

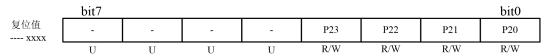
位 0

P20

P2LR0

TR20

PUR20


表 2-6 与 P2 口相关的寄存器

2.5.1.1 P2 口状态寄存器(P2)

寄存器 P2 各位对应端口 P2 口各引脚作为普通 I/O 口时的状态。如寄存器 2.10 所示

寄存器2.10:P2: P2口状态寄存器(地址: 06H)

位 7

P2<3:0>: 读 P2 口各引脚电平

1 = 对应引脚为逻辑高电平 0 = 对应引脚为逻辑低电平

图注: R=可读 W=可写 -=未用 U=未实现位

注:读 P2寄存器实际读 P2引脚的电平状态。

2.5.1.2 P2 口输出锁存寄存器(P2LR)

寄存器 P2LR 是 P2 口输出锁存寄存器。在 P2 口作为输出时,通过写 P2LR 寄存器来设置输出 P2 口的状态。

寄存器2.11: P2LR: P2口输出锁存寄存器(地址: 46H)

P2LR<3:0>: 写 P2 口输出状态

1 = 对应引脚输出高电平 0 = 对应引脚输出低电平

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.1.3 P2 口方向控制寄存器(TR2)

如寄存器 2.12 所示,通过将寄存器 TR2 中的某位置 1,将对应管脚设置为输入口。清零设置为输出口。

寄存器2.12: TR2: P2口方向控制寄存器(地址: 26H)

_	bit7							bit0
复位值 1111 1111	-	-	-	-	TR23	TR22	TR21	TR20
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TR2<3:0>: P2 口各引脚方向控制位

1 = P2 口对应引脚被配置为输入端口 0 = P2 口对应引脚被配置为输出端口

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.1.4 P2 口上拉功能控制寄存器(PUR2)

KF8TS2508/2510/2514 中 P2 引脚均带有上拉功能,可通过上拉功能控制寄存器和 OPTR 寄存器中的 $\overline{\text{PUPH}}$ 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将PUPH(上拉功能总使能位)位清零,允许 IO 端口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.13 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.13: PUR2: P2口弱上拉控制寄存器(地址:61H)

	bit7							bit0
复位值 1111 1111	-	-	-	-	PUR23	PUR22	PUR21	PUR20
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUR2<3:0>: P2 上拉功能使能位

1 = 使能对应的端口上拉功能 0 = 禁止对应的端口上拉功能

图注: R=可读 W=可写 -=未用 U=未实现位

2.5.2 P2 口原理功能框图

如引脚示意图所示, P2 口共有 4 个引脚, P2 口引脚原理功能如图 2.5 所示:

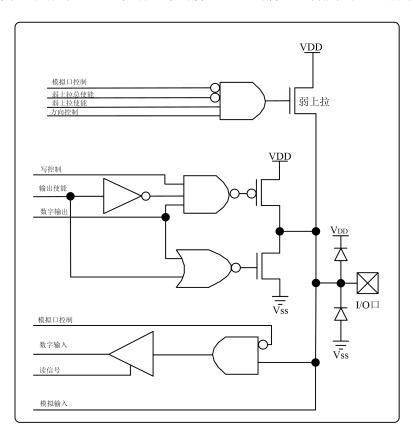


图 2.5 P2 口引脚原理功能框图

3 存储器

如图 3.1 所示,KF8TS2508/2510/2514 中存储器主要由程序存储器(ROM)和数据存储器(RAM)组成,程序存储器和数据存储器地址空间相互独立。其中程序存储器为 8K 字节(4K×16 位)的 FLASH 存储器;数据存储器由特殊功能寄存器和通用寄存器组成,特殊功能寄存器空间为 224×8 位,通用数据寄存器空间为(384+16)×8 位。另外 KF8TS2508/2510/2514中还有一些其它存储器,包括:寄存器组 R0~R7、16 级硬件堆栈、ID 地址单元等。

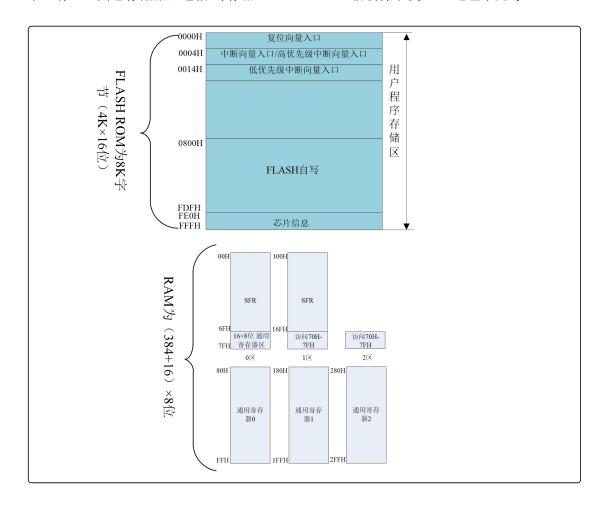


图 3.1 存储器组织图

3.1 程序存储器(ROM)区

KF8TS2508/2510/2514 有一个 13 位的程序计数器,实际芯片中实现了 $4K\times16$ 位的程序存储空间,地址为 $0000H\sim0$ FFFH,复位向量入口地址为 0000H,中断向量有两级入口地址,高为 0004H,低为 0014H。

如图 3.2 所示,程序计数器(PC)的低 8 位(PC<7:0>)来自特殊功能寄存器 PCL,高 5 位 (PC<12:8>)来自 PCH 寄存器。在任何复位发生后 PC 值将被清零。在有任何未屏蔽中断发生 后 PC 值将指向 0004H 或 0014H 地址。图 3.3 为程序存储器区的地址映射图。

在用户的程序中,每当执行一条汇编指令 PC 值会自动加 1,指向下一条要执行的指令。

当有子程序调用或响应中断时,CPU 会将 PC+1 后的值压入堆栈进行保存,然后将子程序或中断入口地址送到 PC 中,CPU 根据 PC 的值跳转到对应的地址执行命令。

PCH<7:5>	PCH<4:0>	PCL<7:0>
----------	----------	----------

图 3.2 程序计数器 (PC)

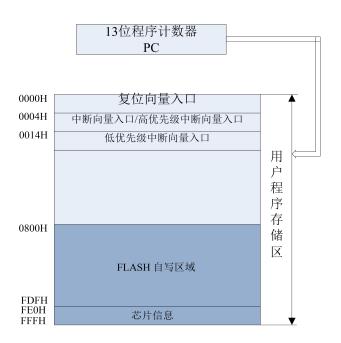
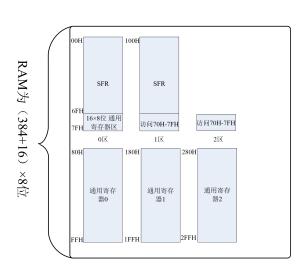



图 3.3 KF8TS2508/2510/2514 程序存储器映射

3.2 数据存储器(RAM)区

如图 3.4 所示,KF8TS2508/2510/2514 中的数据存储器由 3 个区组成,0 区和 1 区是 256 个字节,2 区是 144 个字节,其中前两个区的前 112 字节是特殊功能寄存器 SFR。SFR 地址空间为 $00H\sim6FH$ 、 $100H\sim16FH$;而 $70H\sim7FH$ 有 16 个字节为通用寄存器区,即当用户访问其他 BANK 区 $70H\sim7FH$ 的存储单元时,均是对 BANK 0 区的 $70H\sim7FH$ 操作。

图 3.4 数据存储器地址映射图

3.2.1 通用寄存器区

如图 3.4 所示,通用寄存器的空间为 400 字节,0 区至 2 区通过 BANK 寄存器中的 PR3~PR0 位进行选择,如表 3-1 所示。

寄存器3.1: BANK: 通用寄存器选区寄存器

复位值	bit7							bit0
0000	-	-	-	-	PR3	PR2	PR1	PR0
,	U	U	U	U	R/W	R/W	R/W	R/W

表 3-1 通用寄存区地址

PR<3:0>	通用寄存器区	地址
0000	通用寄存器 0 区	80H∼FFH
0001	通用寄存器 1 区	180H∼1FFH
0010	通用寄存器 2 区	280H∼2FFH
其他	系统保留	-

图注: R=可读 W=可写 -=未用 U=未实现位

3.2.2 特殊功能寄存器(SFR)区

KF8TS2508/2510/2514 内部的 I/O 口控制、定时/计数器、PWM、中断等各种控制寄存器和状态寄存器都称为特殊功能寄存器。附录 1 列出 SFR 的地址映射及复位初始值等。

状态字寄存器(PSW):如寄存器 3.1 所示,PSW 的低三位是算术运算标志位,在进行加、减等运算时对它们产生影响(具体请参考汇编指令部分)。 TO 和 PD 是复位状态位,当单片机有复位或看门狗超时、执行休眠等指令时,会对这两位产生影响。

寄存器3.1: PSW: 状态字寄存器(地址: 03H)

_	bit7							bit0
复位值 0001 1xxx	-	-	-	TO	$\overline{ ext{PD}}$	Z	DC	CY
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

<u>TO</u>: 超时标志位

1 = 在上电复位、CWDT 指令或 IDLE 指令执行之后

0=WDT 超时被清零

PD: 上电复位标志位

1 = 上电复位或执行 CWDT 指令后

0 = 执行 IDLE 指令后被清零

Z: 零状态标志位

1= 算术运算或者逻辑运算的运行结果为0

0= 算术运算或者逻辑运算的运行结果不为 0

DC: 辅助进/借位标志位

1= 执行结果的低 4 位向高 4 位有进位(加指令)或没有借位(减指令)

0 = 执行结果的低 4 位向高 4 位没有进位(加指令)或有借位(减指令)

CY: 进位/借位标志位

- 1 = 执行结果(8位)向高位有进位时(加指令)或没有借位(减指令)
- 0= 执行结果(8位)向高位无进位时(加指令)或有借位(减指令)

图注: R=可读 W=可写 -=未用 U=未实现位

注:对于借位的情况,当指令执行后,低四位(或高四位)向高位有借位时,DC(或CY)标志为0,当没有借位时其值为1。关于对标志位是否产生影响的指令请参考"汇编指令集"部分。

3.3 FLASH 自写

KF8TS2508/2510/2514 在程序存储区开辟了一个 2016×16 位的自写区域,地址范围从 800H~FDFH。该区域在正常工作期间是可读写的,它并没有直接映射到寄存器空间,而是 通过特殊功能寄存器间接寻址。有 6 个特殊功能寄存器用于访问该区域。

		700	, _ , 11	и котт др	7 CH 3 FG 11	і нн				
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
3AH	NVMADDRH	-	-	-	地址指针高 5 位					
3BH	NVMADDRL			地址指针低 8 位						
3CH	NVMCTL0				控制寄	存器 1				
3DH	NVMCTL1				控制寄	存器 2				
39H	NVMDATAL		数据寄存器低 8 位							
38H	NVMDATAH				数据寄存	器高 8 位				

表 3-2 与 FLASH 相关的寄存器

如图 3.6 所示,写 FLASH 时,FLASH 中所有内存单元以连续的 16 个地址为一个数据块,2 个数据块为一页。

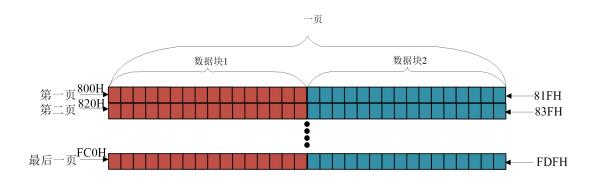


图 3.6 Flash 自写区域地址映射图

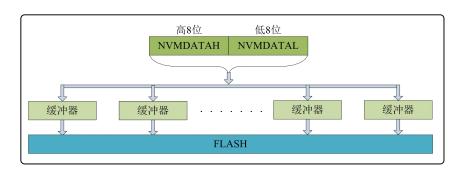


图 3.7 写操作

如图 3.7 所示,在写 Flash 时,有 16 个 16 位的缓冲寄存器,用来临时存放要写入 Flash 中的数据。

3.3.1 寄存器 NVMDATAH/L

CPU 读写 Flash 时,用来存放要写入或者读出 Flash 的数据,NVMDATAL 存放数据的 低 8 位,NVMDATAH 存放数据的高 8 位。

3.3.2 寄存器 NVMADDRH/L

如寄存器 3.2 所示,NVMADDRH/L 地址位于特殊功能寄存器区的 3AH/3BH。用来存放要写入 Flash 的 13 位的地址信息,NVMADDRH 存放地址的高 5 位,NVMADDRL 存放地址的低 8 位。

寄存器3.2: NVMADDRH: 数据指针高5位(地址: 3AH)

复位值 0 0000	-	-	-	bit4	bit3	bit2	bit1	bit0
0 0000	U	U	U	R/W	R/W	R/W	R/W	R/W
E D #	NVMAD	DRL: 数据	岩指针低8位	应(地址: 3B	Н)			
复位值 0000 0000	bit7	bit6	bit5	bit4	bit3	bit2	bitl	bit0
	R/W	R/W	R/W	R/W	R/W	R/W	P/W	P/W

图注: R=可读 W=可写 -=未用 U=未实现位

NVMCTL0/NVMCTL1为写Flash 控制寄存器,地址位于特殊功能寄存器区的3CH/3DH。用户在写Flash 时,将 NVMDATAH/L 中送入要写入的数据, NVMADRRH/L 中送入要写入的地址, 然后通过向 NVMCTL0 和 NVMCTL1 送入固定的写命令,将要写入块的数据存到对应的缓冲寄存器中。

在读 Flash 时,将要读的地址送到 NVMADDRH/L 中,然后向 NVMCTL0 写入固定的读命令,把要读的数据送到 NVMDATAH/L 中。

3.3.3 写 Flash

写 Flash 时,只能对 Flash 成块写入数据,不允许跨区操作。不能单独将一个字节(或字)的数据写入某块的一个字节(或字)中,如果实际上写入 Flash 中的数据没有 16 个字或不能被 16 整除(例如要写入一组 15 个字的数据),需要将块中不需要写入数据的单元写入 0 或者其它值,否则可能会导致写入的数据出错。如果原来的 Flash 保存有数据,现在需要修改原数据中的一个字或者几个字,其它单元的值不变,则需要先将其对应块中其它数据读出来保存,然后再根据实际情况将需要修改的值和之前读出的值写入即可。

在写 Flash 时,必须先对每个页的第一块进行写操作,以擦除本页的数据,如果没有对第一块进行写操作,直接写后面块则本页的所有数据都不会被擦除。即只有对每个页的第一块进行写操作才会擦除本页的数据,对其它块写操作不会擦除本页数据,可能导致写入数据

出错。

注: 1.写Flash时,从Flash自写首800H地址开始处,连续的16个字作为一个数据块,连续的2个数据块作为一个页。

2.写Flash时,不管其存储单元是否有数据,都要先执行一次擦除操作,且擦除操作只有在写每页的第一个数据块时才会执行,将本页所有单元数据擦除。而对每页的其他数据块写操作时不会有擦除操作发生。

3.将各页第一个数据块写完后,CPU将停止6ms执行擦除和写操作,写其他块时,停止3ms执行写操作。

4.配置位的SWRTEN需配置为0,才能对Flash进行写操作。

在写 FLASH 时,将要写入的数据送到 NVMDATAL/H,地址送到 NVMADDRH/L 后,通过执行以下指令完成写操作:

MOV R5, BANK ;保存当前寄存器存储区

CLR BANK ;切换到Bank0区

MOV DATA BANK, R5 ;该样例要求DATA BANK在0区,否则添加切区

MOV R5, INTCTL ;保存当前的中断状态

MOV DATA INTCTL, R5 ;该样例要求DATA_INTCTL 在0区,否则添加切区

CLR INTCTL, 7 ;关闭总中断

JNB INTCTL, 7

JMP \$-2

MOV R5, OSCCTL ;保存当前的时钟状态

MOV DATA_OSCCTL,R5 ;该样例要求DATA_OSCCTL在0区,否则添加切区

MOV R5, #0X10 ;切换到250kHz

MOV OSCCTL, R5

;;以下时序不可更改 MOV R5,#0X84

MOV NVMCTL0, R5

MOV R5, #0X69

MOV NVMCTL1, R5

MOV R5,#0X96 MOV NVMCTL1,R5

SET NVMCTL0, 1

NOPZ

NOPZ

NOPZ NOPZ

NOPZ

NOPZ

NOPZ

NOPZ

NOPZ

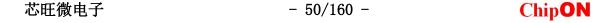
NOPZ

MOV R5, #0X80 ;关闭Flash的写操作,防止意外写

MOV NVMCTL0, R5

MOV R5, DATA OSCCTL ;恢复时钟状态

MOV OSCCTL,R5


JNB DATA_INTCTL,7 ;恢复中断状态

SET INTCTL, 7

MOV R5, DATA BANK ;BANK区还原

MOV BANK, R5

以上指令中的立即数 0X80, 0X84, 0X69, 0X96 是固定不变的。如果未完全按照上述 顺序(先将 0X69 写入 NVMCTL1, 再将 0X96 写入 NVMCTL1, 最后将 NVMCTL0.1 位置

1) 执行指令,将不会启动写操作。

写 FLASH 的步骤为:

- 1. 将要写入的数据的送到 NVMDATAH/L;
- 2. 将对应的 FLASH 地址送到 NVMADDRH/L;
- 3. 执行上面的写命令,此时,CPU 将要写入数据的一个字保存到 FLASH 的数据缓冲器中:
- 4. 重复执行步骤 1、2、3 十六次,此时 CPU 自动将要写入第一块的数据分别存入对应的 FLASH 的数据缓冲器中;
- 5. 当上边第 16 次写命令执行完后,CPU 自动发出擦除本页的命令,将本页原来的数据全部擦除,擦除完毕后,将数据缓冲器中的数据送到对应的地址中。在这个过程中 CPU 停止其它工作 6ms 用来执行擦除和写入数据的命令。
- 6. 重复执行步骤 1、2、3 十六次,将数据写入本页的第二块。当执行完第 16 次写命令后, 因本次写的不是页的第一块,CPU 不会执行擦除命令,仅将数据缓冲器中的数据写入 对应的存储单元,写操作耗时 3ms。

3.3.4 读 Flash

在读 FLASH 时,将要读取的地址送到 NVMADDRH/L 后,通过执行以下操作完成读操作:

MOV R5,#0X81 MOV NVMCTL0,R5 NOPZ NOPZ

上面指令中的立即数 0X81 是固定不变的。此时该地址的数据高 8 位被送 NVMDATAH, 低 8 位送到 NVMDATAL。无论配置位 SWRTEN 为何值都不影响读 FLASH。

读 FLASH 是逐字读取的,不要求一块一块的读。读 FLASH 时通过向 NVMCTL0 写入 0X81 来执行读命令。

读 FLASH 的步骤如下:

- 1. 将要读的数据单元的地址送到 NVMADDRH/L 中;
- 2. 向 NVMCTL0 写入读命令;
- 3. 两个指令周期后该单元的数据被送到 NVMDATAH/L。

3.4 寄存器组 Rn

KF8TS2508/2510/2514 芯片中有一个工作寄存器组 R0~R7,可用做间接寻址的中间寄存器,存放操作数的地址;隐含目的操作数的指令中,默认 R0 作为目的操作数(如: RRCR 0X81);在读晶振校准值和参考电压校准值时,默认将读到的值送到 R0 中。

3.5 **ID** 地址单元

KF8TS2508/2510/2514的程序存储器空间的最后32个地址单元被指定为ID地址单元,

用于存放芯片校准信息,地址为 0FE0H~0FFFH。

4 汇编指令及寻址方式

4.1 寻址方式

KF8TS2508/2510/2514 机提供 5 种寻址方式,分别为:寄存器寻址、直接寻址、立即数寻址、寄存器间接寻址和位寻址。KF8TS2508/2510/2514 的指令可以没有操作数、一个操作数、两个操作数。

4.1.1 寄存器寻址

采用这种寻址方式的指令中的操作数为寄存器组 R0-R7的一个。

例:

CLR R0 ; R0←0 将寄存器 R0 清零

只有一个操作数(R0的值),寻址方式为寄存器寻址。

ADD R0, R1

两个操作数(R0和R1),寻址方式为寄存器寻址。

4.1.2 直接寻址

在指令中的操作数为某个寄存器的直接地址,该地址指出其参与运算的数据所在的地址。直接寻址可以是:特殊功能寄存器、通用数据存储器。 例:

MOV R0,0X81 ; R0←(81H) 将 81H 单元的数据送到 R0 中指令中,源操作数寻址方式为直接寻址,目的操作数为寄存器寻址。

INC 0X3B ; 3BH←(3BH)+1 将地址 3BH 里的值加 1。 指令中含有一个操作数,寻址方式为直接寻址。

4.1.3 立即数寻址

在指令中的操作数为立即数。

例:

MOV R0,#0X20 ; R0←0X20 将立即数 0X20 送到寄存器 R0 中

ADD R0,#0X20 ; R0 \leftarrow (R0)+0X20 寄存器 R0 的值与 0X20 相加结果送到 R0 AND R0,#0X20 ; R0 \leftarrow (R0)&0X20 寄存器 R0 的值与 0X20 相与结果送到 R0 以上三条指令中源操作数都是#0X20,为立即数寻址,目的操作数为寄存器寻址。

4.1.4 寄存器间接寻址

这种寻址方式中,寄存器的内容指定操作数的地址,即寄存器中存放的是操作数的地址。间接寻址只有两条指令 LD 和 ST。

例:

LD R0, [R1] ; R0←((R1)) 将 R1 的内容所指地址单元的数据送到 R0 指令中源操作数的寻址方式为寄存器间接寻址,目的操作数为寄存器寻址。

ST [R0], R1 ; (R0)←(R1) 将 R1 的内容送到 R0 的内容所指向的地址单元指令中目的操作数的寻址方式为寄存器间接寻址,源操作数为寄存器寻址。

4.1.5 位寻址

指令中的操作数是寄存器的某位,这样的寻址方式称为位寻址。

例:

CLR INTCTL,1 ; 将 INTCTL 的第 1 位清零 CLR 0X80,1 ; 将 80H 的第 1 位清零

JNB 0X80.1 : 如果 80H 的第 1 位为 0 则跳过下一条指令执行后面的程序

4.2 汇编指令

KF8TS2508/2510/2514 系列单片机汇编指令共有 73 条,除子程序调用、子程序返回、中断返回、部分跳转指令为双周期指令外,其余指令均为单周期指令。所有指令都占两个字节。

按照指令的功能可将其分为:数据传送指令、算术运算指令、逻辑运算指令、位操作指令和转移指令和特殊指令。具体指令集请参考附录 2。

5 中断

KF8TS2508/2510/2514 单片机的中断源有:

- INT0/1/2
- T0 溢出中断
- T1/3/4 中断
- P0 口引脚电平变化中断
- A/D 中断
- PWM1/2 中断
- I2C 中断
- ●电容触摸(CT)中断
- ●SSCI 模块 I2C 总线冲突 (BCL) 中断
- ●外部时钟故障 (OSCFAIL) 中断

在本单片机中有两个中断优先级,其中高优先级向量位于 0X0004H,低优先级向量位于 0X0014H。在中断服务程序里可通过 PCTL 的 IPEN(PCTL<3>)进行中断优先级设置。在中断服务子程序中通过检测相应的中断标志位来确定具体是哪个中断源触发发生。

KF8TS2508/2510/2514 中的 INT1/2、T1、T3、T4、ADC、PWM1/2 、I2C、BCL、CT 和 OSCFAIL 都属于外设,因此对应的中断称作外设中断,其它中断源产生的中断属于内部中断。中断逻辑如图 5.2 所示。在中断逻辑框图中,每个中断源有 3 个位用于控制其操作。这些位的功能分别是:

- ☞标志位表明发生了中断事件;
- ☞ 中断允许位允许程序跳转到中断向量地址处执行;
- ☞ 中断优先级位用于选择高优先级及还是低优先级;

通过将 IPEN 位 (PCTL<3>) 置 1,可使能中断优先级功能。

当 IPEN 置 1 时,有两个中断允许位,分别是 AIEH 和 AIEL。将 AIEH(INTCTL<7>)置 1,可允许所有中断优先级位已置 1 的中断,即高优先级的中断。将 AIEL(INTCTL<6>)置 1,可允许所有中断优先级位已清零的中断,即低优先级的中断。当中断标志位、中断允许位和中断优先级位都被置 1 时,中断将根据设置的中断优先级立即跳转到地址0x0004H 或者 0x0014H。进低优先级中断时清零 AIEL,退出中断时置 1 AIEL;进高优先级中断时清零 AIEH,退出中断时置 1 AIEH;(AIEH=0 时禁止所有中断)。高优先级中断事件可以中断正在处理的低优先级中断事件。

其原理框图如图 5.1 下:

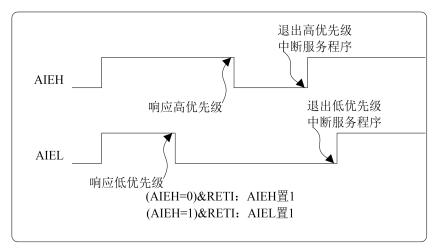


图 5.1 中断优先级工作原理图

当 IPEN 位清零时,就会禁止中断优先级,即为普通模式。所有中断都跳转到 0x0004H 开始执行。在普通模式下,没有中断优先级,各个中断源的中断优先级控制寄存器 IP0、IP1 和 IP2 均无效。AIE(INTCTL<7>)为全局中断使能位,PUIE(INTCTL<6>)为外设中断使能位。

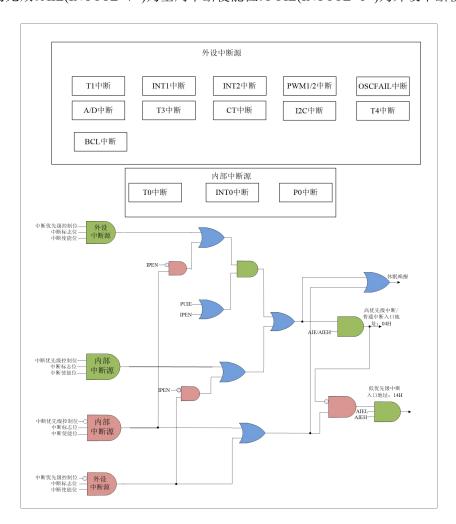


图 5.2 中断逻辑

5.1 中断相关的寄存器

位 4 地址 寄存器 位 7 位 6 位 5 位 3 位 2 位 1 位 0 ΔIF/ PUIE/ 0BH INTCTL T0IE INT0IE P0IE T0IF INT0IF P0IF AIEH **AIEL** PWM2IE 2CH EIE1 ADIE INT2IE INT1IE T1IE _ 2DH EIE2 T3IE **BCLIE** SSCIIE 4AH EIE3 T4IE OSCFAILIE EIF1 ADIF INT2IF INT1IF PWM2IF T1IF 0CH 0DH EIF2 T3IF **BCLIF** SSCIIF OSCFAILIF 4BH EIF3 T4IF PT0 PINT0 PP0 22H IP0 23H IP1 PADC PINT2 PINT1 PPWM2 PT1 24H PSSCI IP2 PT3 **PBCL** 29H PT4 IP3 POSCFAIL

表 5-1 与中断相关的寄存器

5.1.1 中断控制寄存器 INTCTL

INT2SE

INT1SE

2EH

67H

PCTL

INTEDGCTL

普通模式下,AIE 为全局中断使能位,当其被清零时,禁止所有中断。PUIE 为外设中断使能位,当其被清零时禁止所有外设中断。具体的中断逻辑如图 5.1 所示。

SLVREN

IPEN

SWDTEN

POR

BOD

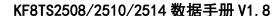
T1CLKEN

在优先级中断中,AIEH 为全局优先级中断使能位,当其被清零时,禁止所有中断。AIEL 为低优先级中断使能位,当其被清零时禁止所有低优先级中断。具体的中断逻辑如图 5.1 所示。

注: 1. 当中断条件满足时,无论相应的中断使能位或者全局中断使能位AIE的状态如何,中断标志位将被硬件置1。

2. 中断条件满足时,中断标志位通过硬件置1,而清零则需要软件完成。

寄存器5.1: INTCTL: 中断控制寄存器(地址: 0BH)


bit7 bit0 复位值 AIE/AIEH PUIE/AIEL TOIE INT0IE P0IE T0IF INT0IF P0IF 0000 0000 R/W R/W R/W R/W R/W R/W R/W

AIE/AIEH: 全局中断使能位/优先级中断使能位

当 IPEN=0

1=使能所有未屏蔽的中断

0=禁止所有中断

当 IPEN=1

1=允许所有高优先级的中断

0=禁止所有中断

PUIE/AIEL: 外设中断使能位/低优先级中断使能位

当 IPEN=0

1=使能所有未屏蔽的外设中断

0=禁止所有外设中断

当 IPEN=1

1=允许所有低优先级的中断 0=禁止所有低优先级的中断

注: AIEL 和 PUIE 是两个地址相同但物理上分开的寄存器, AIEL 只有在 IPEN=1 时才可写, PUIE 只有在 IPEN=0 时才可写; 使用时在配置 IPEN 位之后, 再对 PUIE (或 AIEL) 位赋值。

TOIE: TO 溢出中断使能位

1=使能 T0 中断

0=禁止 T0 中断

INTOIE: INTO 中断使能位

1=使能 INT0 中断

0=禁止 INT0 中断

POIE: P0 口电平变化中断使能位

1=使能 P0 口电平变化中断

0=禁止 P0 口电平变化中断

TOIF: TO 溢出中断标志位

1=T0 寄存器溢出

0=T0 寄存器未溢出

INT0IF: INT0 中断标志位

1=INT0/P0.2 产生外部中断

0=INT0/P0.2 未产生外部中断

POIF: PO 口电平变化中断标志位

1=引脚 P0.0~P0.5 至少有一个电平状态发生变化

0=引脚 P0.0~P0.5 电平状态未发生变化

5.1.2 中断使能寄存器 EIE1

寄存器5.2: EIE1: 中断使能寄存器(地址: 2CH)

	bit7							bit0	_
复位值 0000 0000	-	ADIE	INT2IE	INT1IE	-	PWM2IE	-	T1IE	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

ADIE: AD 中断使能位

1 = 使能 AD 中断

0 = 禁止 AD 中断

INT2IE: INT2 中断使能位

1 = 使能 INT2 中断

0 = 禁止 INT2 中断

INT1IE: INT1 中断使能位

1 = 使能 INT1 中断

0 = 禁止 INT1 中断

PWM2IE: PWM2 中断使能位

1 = 使能 PWM2 中断

0 = 禁止 PWM2 中断

T1IE: T1 中断使能位

1 = 使能 T1 中断

0 = 禁止 T1 中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.3中断使能寄存器 EIE2

寄存器5.3: EIE2: 中断使能寄存器(地址: 2DH)

	bit7							bit0
复位值 0000 0000	T3IE	-	-	-	-	-	BCLIE	SSCIIE
,	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

T3IE: T3 中断使能位/触摸中断使能位

1 = 允许 T3 中断/触摸中断

0 = 禁止 T3 中断/触摸中断

BCLIE: BCL 中断使能位

1 = 允许 BCL 中断

0 = 禁止 BCL 中断

SSCIIE: I2C 中断使能位

1= 允许 I2C 中断

0= 禁止 I2C 中断

5.1.4 中断使能寄存器 EIE3

寄存器5.4: EIE3: 中断使能寄存器(地址: 4AH)

 复位值 000---- T4IE
 OSCFAIL IE

 R/W
 R/W
 R/W
 U
 U
 U
 U
 U

T4IE: T4 中断使能位

1= 允许 T4 中断

0 = 禁止 T4 中断

OSCFAILIE:外部时钟故障中断使能位

1 = 允许外部时钟故障中断

0 = 禁止外部时钟故障中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.5 中断标志寄存器 EIF1

寄存器5.5: EIF1: 外设中断标志寄存器(地址0CH)

- 1	bit7							bit0
复位值 0000 0000	-	ADIF	INT2IF	INT1IF	ı	PWM2IF	-	T1IF
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADIF: AD 完成中断标志位

1 = AD 转换完成

0=AD 转换没有完成

INT2F: INT2 中断标志位

1 = INT2/P1.3 产生外部中断

0 = INT2/P1.3 未产生外部中断

INT1IF: INT1 中断标志位

1 = INT1/P1.2 产生外部中断

0 = INT1/P1.2 未产生外部中断

PWM2IF: PWM2 中断标志位

1 = PWM2 使能时, T1H 和 PP2 匹配

0 = PWM2 使能时, T1H 和 PP2 不匹配

T1IF: T1 寄存器溢出标志位

1 = T1 寄存器溢出

0=T1 寄存器未溢出

5.1.6 中断标志寄存器 EIF2

寄存器5.6: EIF2: 外设中断标志寄存器(地址: 0DH)

 复位值 0000 0000
 T3IF
 BCLIF
 SSCIIF

 R/W
 R/W
 R
 R
 R/W
 R/W
 R/W
 R/W
 R/W
 R/W

T3IF: T3 中断标志位/触摸中断标志位

1=T3 溢出/触摸产生了中断

0=T3 未溢出/触摸未产生中断

BCLIF: BCL 中断标志位

1=BCL产生了中断

0=BCL 未产生中断

SSCIIF: SSCI 中断标志位

1 = I2C 产生了中断 0 = I2C 未产生中断

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.7 中断标志寄存器 EIF3

寄存器5.7: EIF3: 中断标志寄存器(地址: 4BH)

	bit7							bit0	
复位值 000	T4IF	-	OSCFAIL IF	-	-	-	-	-	
	R/W	R/W	R/W	U	U	U	U	U	_

T4IF: T4 中断标志位

1=T4 溢出后产生了中断

0=T4 未产生中断

OSCFAILIF:外部时钟故障中断标志位

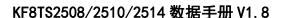
1 = 外部时钟发生故障

0 = 外部时钟未发生故障

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.8 中断优先级控制寄存器 IP0

当 IPEN=1 时,中断优先级控制寄存器 IPO 才有效。


寄存器5.8: IPO: 中断优先级控制寄存器0(地址: 22H)

复位值	bit7									
复位值 000	-	-	-	-	-	PT0	PINT0	PP0		
'	U	U	U	U	U	R/W	R/W	R/W		

PT0: T0 中断优先级控制位

1 = T0 中断为高优先级 0 = T0 中断为低优先级

PINT0: INT0 中断优先级控制位

1 = INT0 中断为高优先级

0 = INT0 中断为低优先级

PP0: P0 电平变化中断优先级控制位

1=P0 电平变化中断为高优先级 0=P0 电平变化中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.9 中断优先级控制寄存器 IP1

当 IPEN=1 时,中断优先级控制寄存器 IP1 才有效。

寄存器5.9: IP1: 中断优先级控制寄存器1(地址: 23H)

	bit7							bit0
复位值 0000 0000	-	PADC	PINT2	PINT1	-	PPWM2	-	PT1
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PADC: AD 中断高优先级控制位

1 = AD 中断为高优先级

0=AD 中断为低优先级

PINT2: INT2 中断高优先级控制位

1 = INT2 中断为高优先级

0=INT2 中断为低优先级

PINT1: INT1 中断高优先级控制位

1 = INT1 中断为高优先级

0= INT1 中断为低优先级

PPWM2: PWM2 中断高优先级控制位

1 = PWM2 中断为高优先级

0 = PWM2 中断为低优先级

PT1: T1 中断高优先级控制位

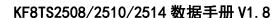
1=T1 中断为高优先级

0=T1 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.10中断优先级控制寄存器 IP2

当 IPEN=1 时,中断优先级控制寄存器 IP2 才有效。


寄存器5.10: IP2: 中断优先级控制寄存器2(地址: 24H)

	bit7							bit0	_
复位值 0000 0000	PT3	-	-	-	-	-	PBCL	PSSCI	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•

PT3: T3 中断高优先级控制位/触摸中断高优先级控制位

1=T3 中断为高优先级/触摸中断为高优先级

0=T3 中断为低优先级/触摸中断为低优先级

PBCL: BCL 中断高优先级控制位

1=BCL 中断为高优先级

0=BCL 中断为低优先级

PSSCI: SSCI 中断高优先级控制位

1 = I2C 中断为高优先级 0 = I2C 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.11 中断优先级控制寄存器 IP3

当 IPEN=1 时,中断优先级控制寄存器 IP3 才有效。

寄存器5.11: IP3: 中断优先级控制寄存器3(地址: 29H)

 复位值 000---- bit7
 bit0

 R/W
 R/W
 R/W
 R/W
 U
 U
 U
 U
 U

PT4: T4 中断高优先级控制位

1=T4 中断为高优先级 0=T4 中断为低优先级

POSCFAIL: OSCFAIL 中断高优先级控制位

1 = OSCFAIL 中断为高优先级 0 = OSCFAIL 中断为低优先级

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.12 电源控制寄存器 PCTL

寄存器5.12:PCTL: 电源控制寄存器(地址:2EH)

	bit7							bit0
复位值 1 000x	-	-	-	SLVREN	IPEN	SWDTEN	POR	LVR
	U	U	U	R/W	R/W	R/W	R/W	R/W

SLVREN: 软件欠压检测使能位

1 = 使能欠压检测

0 = 禁止欠压检测

IPEN: 中断优先级控制位

1 = 使能中断优先级功能,即为优先级模式

0 = 禁止中断优先级,即为普通模式

注: AIEL 和 PUIE 是两个地址相同但物理上分开的寄存器, AIEL 只有在 IPEN=1 时才可写, PUIE 只有在 IPEN=0 时才可写, 使用时在配置 IPEN 位之后, 再对 PUIE (或 AIEL) 位赋值。

SWDTEN: 软件看门狗定时器使能位

当配置字的 WDTEN=0 时

KF8TS2508/2510/2514 数据手册 V1.8

1 = 软件使能看门狗定时器

0 = 软件禁止看门狗定时器

当配置字的 WDTEN=1 时,为无关位

POR: 上电复位状态位

1 = 未发生上电复位

0 = 发生了上电复位

LVR: 欠压复位状态位

1 = 未发生欠压复位 0 = 已发生欠压复位

图注: R=可读 W=可写 -=未用 U=未实现位

5.1.13 INT 中断沿选择寄存器 INTEDGCTL

寄存器5.13:INTEDGCTL:INT中断沿选择寄存器(67H)

复位值	bit7								
夏亚祖 110	INT2SE	INT1SE	-	-	-	-	-	T1CLKEN	
	R/W	R/W	U	U	U	U	U	R/W	

INT2SE: INT2 触发脉冲边沿选择位

1 = 上升沿触发

0 = 下降沿触发

INT1SE: INT1 触发脉冲边沿选择位

1 = 上升沿触发

0 = 下降沿触

T1CLKEN: T1 定时模式时钟源选择位

当 T1CS=0 时:

1=T1 时钟为内部高频振荡器时钟 INTHF

0=T1 时钟为系统时钟 4 分频 SCLK/4

当 T1CS=1 时,为计数模式,T1CLKEN 位不起作用,T1 时钟为外部时钟

5.1.14 中断响应

当 IPEN=1 时,为优先级模式,中断被响应后:

- 1. 返回地址压入堆栈;
- 2. 中断入口地址载入 PC;
- 3. 在中断被响应前, AIEH 和 AIEL 位的设置会影响到中断响应的过程:
- ➤ 将 AIEH 和 AIEL 均置 1,可进入高优先级或优先级中断。进入的是高或低优先级中断时, AIEH 或 AIEL 由硬件自动清零,执行高或低优先级中断服务程序,执行指令 IRET 退出高或低优先级中断,硬件自动将 AIEH 或 AIEL 置 1;
- ➤ 只将 AIEH 置 1,则直接进入高优先级中断,AIEH 由硬件自动清零,继续执行中断服务子程序,执行指令 IRET 退出中断服务子程序并由硬件自动将 AIEH 置 1,重新使能未屏蔽的中断;
- 4. 跳转到中断发生处继续执行下面的程序。
- 注: 中断的响应有一定的响应时间:
 - 1.如果已经进入了低优先级中断,再有高优先级中断,此时为中断嵌套;
- 2.如果还没有进入低优先级中断,同时有高优先级中断产生,则直接进入高优先级中断, 相当于两个中断同时产生。

当 IPEN=0 时,为普通模式,中断被响应后:

- 1. 返回地址压入堆栈;
- 2. 中断入口地址载入 PC;
- 3. AIE 位将被硬件清零以禁止其它中断:
- 4. 执行该中断服务子程序;
- 5. 执行指令 IRET 退出中断服务子程序,同时硬件自动将将 AIE 置 1,重新使能未屏蔽的中断;
- 6. 跳转到中断发生处继续执行下面的程序。

7.

进入中断服务程序后,首先保存 PSW 和其它寄存器的值,然后通过查询中断标志位确定中断源。在重新使能中断之前,应在软件中将相应的中断标志位清零,以避免出错。

- 注 1: 中断条件满足时,无论相应的中断使能位或AIE位的状态为何,中断标志位都将被置1。
- 2: 当执行一条清除AIE位的指令后,任何在下一周期等待响应的中断都将被忽略。当AIE位重新置1时,被忽略的中断请求将继续等待被响应。
- 3: 当对中断进行响应,进入中断服务子程序的时候硬件会将AIE位清零关闭总中断,当中断程序执行完,中断返回指令跳出中断子程序时,硬件将AIE位置1打开总中断。

5.2 INT 中断

INT 中断有三个中断源: INT0、INT1 和 INT2,都采用边沿触发方式,如果触发边沿选择位(INTxSE)置 1,则采用上升沿触发;如果触发边沿选择位清零,则采用下降沿触发。

5.2.1 INT0 中断

INTO 中断通过寄存器 INTCTL 中的 INTOIE 位置 1 使能 INTO 中断。通过 OPTR 中的 INTOSE 位设置触发边沿, INTOSE 置 1,将 INTO 设置为上升沿触发,清零设置为下降沿触发。INTCTL 中的 INTOIF 为 INTO 的中断标志位。如果 IPEN 和 PINTO 位均置 1,则 INTO 为高优先级中断。

INTO 引脚有触发脉冲时, INTOIF 被自动置 1, 如果 INTOIE 和 AIE 位为 1, 则响应 INTO 中断。

5.2.2 INT1 中断

INT1 中断通过寄存器 EIE1 中的 INT1IE 位置 1 使能 INT1 中断。通过 INTEDGCTL 中的 INT1SE 位设置触发边沿,INT1SE 置 1,将 INT1 设置为上升沿触发,清零设置为下降沿触发。EIF1 中的 INT1IF 为 INT1 的中断标志位。如果 IPEN 和 PINT1 位均置 1,则 INT1 为高优先级中断。

INT1 引脚有触发脉冲时,INT1IF 被自动置 1,如果 INT1IE、PUIE 和 AIE 位为 1,则响应 INT1 中断。

5.2.3 INT2 中断

INT2 中断通过寄存器 EIE1 中的 INT2IE 位置 1 使能 INT2 中断。通过 INTEDGCTL 中的 INT2SE 位设置触发边沿,INT2SE 置 1,将 INT2 设置为上升沿触发,清零设置为下降沿触发。EIF1 中的 INT2IF 为 INT2 的中断标志位。如果 IPEN 和 PINT2 位均置 1,则 INT2 为高优先级中断。

INT2 引脚有触发脉冲时,INT2IF 被自动置 1,如果 INT2IE、PUIE 和 AIE 位为 1,则响应 INT2 中断。

使用 INT 中断时的设置:

- 1. 将对应的 INTx 引脚设置为数字输入口。
- 2. 选择触发脉冲边沿是上升沿还是下降沿(INT0/1/2SE 置 1 为上升沿触发);
- 3. 将相应的外部中断使能位置 1(IN-),如果为高优先级,则 IPEN 和 PINTx 均置 1。 注:x=0/1/2

5.3 定时器中断

T0/1/4 寄存器发生溢出时,T0IF/T1IF/T4IF 位将会被置 1。通过将 T0IE/T1IE/T4IE 位置 1/清零可使能/禁止该中断。T3 与触摸模块共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PCT。有关定时/计数器模块中断的操作,请参考定时/计数器部分。

5.4 P0 口中断

P0口引脚的输入电平变化将使P0IF(INTCTL.0)位置1。通过设置/清除P0IE(INTCTL.3)位,可使能/禁止该中断。且该端口各引脚可通过IOCL寄存器来对每个引脚进行配置。当IPEN和PP0均置1时,P0口中断配置为高优先级中断。

有关 P0 口的操作,请参考 P0 口部分。

5.5 PWM 中断

使能 PWM1/2 后,T1L 分配给 PWM1 进行计数,T1H 分配给 PWM2 进行计数,当 T1L/H 与 PP1/2 匹配时,会触发相应的中断标志位 T1IF 和 PWM2IF。如果使能 T1IE 或者 PWM2IE,则会触发中断(AIE、PUIE 置 1)。当 IPEN 和 PT1 均置 1 时,PWM1 中断配置为高优先级中断。当 IPEN 和 PPWM2 均置 1 时,PWM2 中断配置为高优先级中断。

详见 PWM 部分。

5.6 中断现场保护

在中断响应时,硬件会把当前 PC 值加 1 入栈保存,中断结束后,硬件在将本次中断入栈时的值弹出载入 PC,继续执行后面的程序。通常,用户可能希望在中断时对一些关键寄存器的内容进行保存(例如,Rn 和 PSW),这些都需通过软件方式实现。

6 定时器/计数器

KF8TS2508/2510/2514 单片机提供一个 8 位的定时器/计数器 T0、1 个 16 位的定时器/ 计数器 T1、1 个 16 位定时器 T3 和 1 个 16 位定时器/计数器 T4。

6.1 定时器/计数器 T0

T0 是一个 8 位的定时器/计数器, 当 T0 寄存器值加到 255 时, 再加 1, 则会产生溢出, T0 寄存器的值返回到 0 开始重新计数。

6.1.1 T0 原理框图

图 6.1 为 T0 的结构框图。T0 模块使用一个 8 位计数器作为预分频器,如寄存器 6.1 所示,通过软件设定 PSA 位(OPTR.3)的状态可对预分频器的分配进行控制, PSA 位清零可将预分频器分配给 T0 模块。通过设置 PS<2:0>位可选择预分频器的分频比。预分频器是不可读写的。

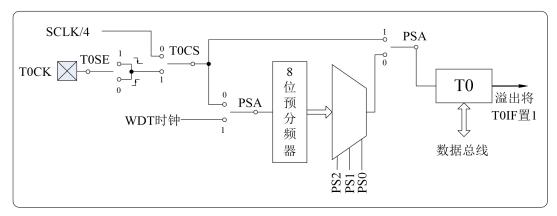


图 6.1 原理框图

6.1.2 T0 相关的寄存器

表 6-1 与 T0 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
01H	T0				8 位讠	十数器			
21H	OPTR	PUPH	INT0SE	T0CS	T0SE	PSA	PS2	PS1	PS0

6.1.2.1 OPTR 选择寄存器

寄存器6.1: OPTR: 选择寄存器(地址: 21H)

bit7 bit0 复位值 $\overline{\text{PUPH}}$ INT0SE T0CS T0SE PSA PS2 PS1 PS0 1111 1111 R/W R/W R/W R/W R/W R/W R/W R/W

PUPH IO (P0/P1/P2)端口上拉功能总使能位

1 = 禁止所有 IO 端口上拉功能 0 = 允许 IO 端口使用上拉功能

INTOSE INTO 中断触发脉冲边沿选择位

1 = INT0/P0.2 为上升沿触发 0 = INT0/P0.2 为下降沿触发

TOCS: TO 模式选择位

1 = 计数模式, T0 的时钟为外部时钟 T0CK/P0.2 0 = 定时模式, T0 的时钟为机器时钟 SCLK/4

TOSE: TO 计数脉冲信号边沿选择位

1= 下降沿触发

0 = 上升沿触发

PSA: 预分频器分配控制位

1 = 预分频器用于 WDT

0 = 预分频器用于 T0

PS<2:0>: 预分频器分频比选择位

PS<2:0>	WDT 分频比	T0 分频比
000	1:1	1:2
001	1:2	1:4
010	1:4	1:8
011	1:8	1:16
100	1:16	1:32
101	1:32	1:64
110	1:64	1:128
111	1:128	1:256

图注: R=可读 W=可写 -=未用 U=未实现位

6.1.3 定时模式

通过将 TOCS 位(OPTR.5)清零可选择定时器模式。在定时模式中,如果不使用预分频器,每一个机器周期 TO 寄存器的值加 1。如果 TO 寄存器被写入初始值,则在接下来的两个机器周期将不执行递增操作,用户可通过将校正值写入 TO 寄存器进行修正。

6.1.4 计数模式

通过将 T0CS 位(OPTR.5)置 1 可选择计数模式。在该模式下, T0 模块在 T0CK 引脚信号的每一次上升沿(T0SE 位清零)或下降沿(T0SE 位置 1)递增计数。

当不使用预分频器时,要求 TOCK 的高电平状态和低电平状态分别保持至少 2T_{sys} 的时间,以实现 TOCK 与内部相位时钟的同步。

6.1.5 T0 的使用

T0 在使用时通过以下步骤进行设置:

- 1. 通过将 T0CS 位清零/置 1 选择定时/计数模式(如果是计数模式,再设置 T0SE 选择脉冲触发边沿,将对应的计数脉冲输入脚 T0CK 设置为输入);
- 2. 如果需要分频,则将预分频器分配给 T0,并设置分频比;
- 3. 给 T0 寄存器设置初始值;
- 4. 如果使用中断方式则将 TOIE 和 AIE 位置 1。

6.2 定时器/计数器 T1

T1 是一个 16 位的定时器/计数器,T1 的低 8 位在寄存器 T1L 中,高 8 位在寄存器 T1H 中,当 T1 计数值达到 65535 后,T1 的值再加 1 就会产生溢出,将 T1 中断标志位置 1。T1 属于外部单元,因此在使用 T1 中断时,需将 PUIE 位置 1,使能外设中断。如图 6.2 所示为 T1 的原理框图。

6.2.1 T1 原理框图

T1 的原理框图如图 6.2 所示,T1 是一个带有门控和预分频的 16 位定时器/计数器,计数时钟可选择外部时钟或者内部时钟,当 T1 与内部时钟一起使用时,T1 用作定时器,当 T1 与外部时钟一起使用时,T1 工作在计数器模式,通过对 T1SY 位(T1CTL<2>)设置可使 T1 工作在异步计数器模式。

该 T1 模块还带有四个预分频器选择项,允许对时钟输入进行 1、2、4 或 8 倍分频。 T1CKS 位(T1CTL<5:4>)对预分频计数器进行控制,T1 预分频计数器不能直接进行读写操作,可通过写入 T1H 或 T1L 使预分频计数器清零。

此外, T1 还带有重载功能, 重载寄存器利用 PP2/PP1 设置。当使能 T1 重载功能时, T1 计数器计数到 T1 重载寄存器中设置的值时, T1 计数器将清零重新开始计数, 且将 T1 中断标志位置 1。

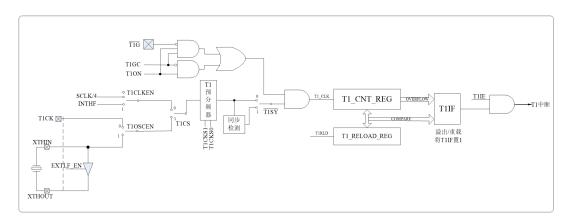


图 6.2 T1 原理框图

6.2.2 T1 时钟

当 T1CTL 寄存器的 T1CS 位置 1 时,T1 工作在计数模式下,T1 的工作时钟源通过 T1OSCEN 位来选择:当 T1OSCEN=1 时,T1 时钟为外部低频时钟;当 T1OSCEN=0 时,T1 时钟为 T1CK;当 T1CTL 寄存器的 T1CS 位清零时,T1 工作在定时模式下,T1 的工作时钟源通过 INTEDGCTL 寄存器的 T1CLKEN 位来选择:当 T1CLKEN=1 时,T1 时钟为内部高频振荡器时钟 INTHF;当 T1CLKEN=0 时,T1 时钟为机器时钟 SCLK/4。

6.2.3 T1 相关的寄存器

表 6-2 与 T1 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0			
0EH	T1L		T1 低 8 位									
0FH	T1H		T1 高 8 位									
10H	T1CTL	T1RLD	T1GC	T1CKS1	T1CKS0	T10SCEN	TISY	T1CS	TION			
16H	PP1		PWM1 周期寄存器									
32H	PP2		PWM2 周期寄存器									

6.2.3.1 T1 控制寄存器

如寄存器 6.2 所示,T1 控制寄存器(T1CTL)用于启动/禁止 T1 以及选择 T1 模块的不同功能特性。

寄存器6.2: T1CTL: T1控制寄存器(地址: 10H)

~ · · · · · · · · · · · · · · · · · · ·	DIT /							DITU	
复位值 0000 0000	TIRLD	T1GC	T1CKS1	T1CKS0	TIOSCEN	T1SY	TICS	TION	
,	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

T1RLD: T1 重载功能使能位

1 = 使能 T1 重载功能

0 = 禁止 T1 重载功能

T1GC: T1 门控使能位

如果 T1ON=0 则该位被忽略

如果 T1ON=1 则:

1 = 使能 TIG 引脚控制(如果 TIG 引脚为低电平, 启动 T1, 为高电平, 关闭 T1)

 $0 = 禁止 \overline{T1G}$ 引脚控制

T1CKS<1:0>: T1 输入时钟预分频比选择位

11 = 1/8 倍预分频比

10 = 1/4 倍预分频比

01 = 1/2 倍预分频比

00 = 1/1 倍预分频比

T1OSCEN: T1 外部低频时钟使能位

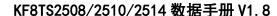
1 = 使能外部低频时钟源作为 T1 计数时钟

0 = 禁止外部低频时钟源作为 T1 计数时钟

T1SY: T1 计数模式外部触发脉冲输入同步控制位

T1CS=1:

1= 外部触发脉冲输入不与系统时钟同步


0 = 外部触发脉冲输入与系统时钟同步

T1CS=0: 该位被忽略, T1 使用内部时钟

T1CS: T1 定时/计数模式选择

1 = 计数模式, T1 时钟为外部时钟

当 T1OSCEN=1 时 T1 时钟为外部低频时钟

当 T1OSCEN=0 时 T1 时钟为 T1CK

0 = 定时模式, T1 时钟可选择内部高频时钟或指令时钟 当 T1CLKEN=1 时 T1 时钟为内部高频振荡器时钟 当 T1CLKEN=0 时 T1 时钟为机器时钟 SCLK/4

T1ON: T1 启动控制位

1 = 启动 T1

0 = 停止 T1

图注: R=可读 W=可写 -=未用 U=未实现位

6.2.4 定时模式

通过将 T1CS 位清零将 T1 设定为定时模式, T1 工作在定时模式时, 对单片机内部时钟进行计数, 当计数时钟选择为内部时钟且不使用预分频器时, 每个时钟周期 T1 寄存器自加1, 加到 0FFFFH 后再加1, T1 溢出,将 T1 中断标志位 T1IF 置1。

如果使能 T1 门控引脚,且 T1ON=1,则在 $\overline{T1G}$ 引脚为低电平时,启动 T1,如果 $\overline{T1G}$ 引脚为高电平,禁止 T1。使用该方式可粗略的对 $\overline{T1G}$ 引脚的低电平持续时间进行计算。

6.2.5 计数模式

通过将T1CS位置1将T1设定为计数模式,通过设置T1OSCEN位选择计数时钟为T1CK或者外部低频时钟。当T1OSCEN为0时, T1在计数脉冲T1CK的上升沿进行递增计数,当T1OSCEN为1时,每个外部低频时钟周期,T1寄存器自动加1。

T1 的计数模式又有同步计数和异步计数两种方式。如果控制位 $\overline{T1SY}$ (T1CTL.2)置 1,则 T1 工作在异步计数模式。计数器根据 T1CK(当 T1OSCEN=0 时)引脚的脉冲进行递增计数。在休眠模式下,计数器将继续递增并在溢出时产生中断以唤醒处理器。

如果控制位 $\overline{\text{T1SY}}$ (T1CTL.2)清零,则 T1 工作在同步计数模式。在内部相位时钟的 Q2 和 Q4 周期对 T1CK 引脚电平进行采样,可以实现 T1CK 与内部相位时钟的同步。

6.2.6 T1 重载功能

置位 T1CTL 寄存器的 T1RLD 位使能 T1 重载功能。通过设置 PP2/PP1 寄存器来设置 T1 的重载点。当设置完 PP2/PP1 寄存器且使能重载功能后,T1 计数器从 0 开始计数,当 计数到 PP2/PP1 寄存器设置的值时,T1 计数器清零并重新开始计数,T1IF 置 1。

T1RLD 位置 1 时会载入一次 PP2/PP1 寄存器的值,当置位 T1RLD 且在 T1 计数过程中对 PP2/PP1 寄存器写入新值时,T1 模块会在下一次重载时载入新的重载点。

6.2.7 T1 在休眠模式下的运行

只有设定在异步计数器模式时,T1才能在休眠模式下工作。在该模式下,计数脉冲T1CK 使计数器递增。通过如下步骤设定定时器以唤醒器件:

- 使能 T1(T1ON/T1CTL.0 置 1)
- 将 T1IE 位(EIE1.0)置 1

KF8TS2508/2510/2514 数据手册 V1.8

• 将 PUIE 位(INTCTL.6)置 1

器件将在溢出时被唤醒。如果 AIE 位(INTCTL.7)置 1,器件将被唤醒并跳转至中断服务程序。

6.2.8 T1 分配给 PWM1/2

当使用 PWM1/2 时需要用到 T1,单片机将 T1L、T1IE 和 T1IF 分配给 PWM1, T1H 分配给 PWM2,具体使用方法参见 PWM1/2 部分。

6.3 定时器 T3

T3 为 16 位定时器,时钟源为振荡器时钟源(Sosc)或内部高频振荡器源(INTHF)可选,通过 T3CTL 寄存器的 T3EN 位控制定时器启动。

当使用触摸功能时, T3 作为触摸转换计时器, 不可作为普通定时器使用。

6.3.1 T3 原理框图

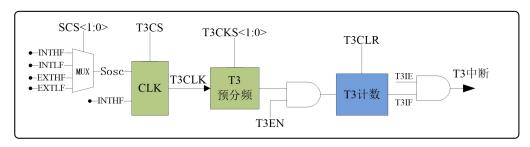


图 6.4 定时器 T3 原理框图

6.3.2 T3 相关寄存器

表 6-4 与 T3 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM
53H	CTCTL0	CTEN	CTSTART	T3CLR	CTCHSEL4	CTCHSEL3	CTCHSEL2	CTCHSEL1	CTCHSEL0
4EH	T3CTL	T3EN	T3CKS1	T3CKS0	T3CS	PWMS	-	-	-
4FH	T3L				T3 低位	寄存器			
5FH	ТЗН	T3 高位寄存器							

6.3.2.1 T3 控制寄存器 T3CTL

寄存器6.5: T3CTL: T3控制寄存器(地址: 4EH)

	bit7							bit0
复位值 0000 0000	T3EN	T3CKS1	T3CKS0	T3CS	PWMS	保留	保留	保留
	R/W	R/W	R/W	R/W	P/W	R/W	R/W	R/W

T3EN: 定时器 T3 使能位

0 = 禁止定时器 T3

1 = 使能定时器 T3

T3CKS<1:0>: 定时器 T3 时钟分频位

00 = 1/1 倍预分频比

01 = 1/2 倍预分频比

10 = 1/4 倍预分频比

11 = 1/8 倍预分频比

T3CS: 定时器 T3 时钟源选择位

0=T3 时钟源为系统时钟源

1=T3 时钟源为内部高频振荡器时钟源 INTHF

KF8TS2508/2510/2514 数据手册 V1.8

PWMS: PWM 输出管脚配置位

0= PWM1 在 P0.2 口输出, PWM2 在 P1.0 口输出 1=PWM1 在 P0.0 口输出, PWM2 在 P0.1 口输出

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

6.3.2.2 电容触摸控制寄存器 0 (CTCTL0)

寄存器6.6: CTCTL0: 电容触摸控制寄存器(地址: 53H)

bit7 bit0 复位值 CTCHSEL CTCHSEL CTCHSEL CTCHSEL CTCHSEL CTSTART T3CLR CTEN 0000 0000 0 R/W R/W R/W R/W R/W R/W R/W

CTEN: 电容触摸使能位

1 = 电容触摸使能 0 = 电容触摸禁止

CTSTART: 电容触摸通道检测启动位

1 = 启动电容触摸计数器 T3(16 位)计数。电容触摸专用比较器输出为低电平

时,该位自动清零,计数器停止计数。

T3CLR: T3 计数寄存器清零位

0=T3 计数寄存器在复位状态

1=T3 计数寄存器退出复位状态

CTCHSEL<4:0>:14 个电容触摸按键输入选择位

00000 = P0.5 作为电容触摸输入

00001 = P2.0 作为电容触摸输入

00010 = P2.1 作为电容触摸输入

00011 = P2.2 作为电容触摸输入

00100 = P2.3 作为电容触摸输入

00101 = P1.7 作为电容触摸输入

00110 = P1.6 作为电容触摸输入

00111 = P1.5 作为电容触摸输入

01000 = P1.4 作为电容触摸输入

01001 = P1.3 作为电容触摸输入 01010 = P1.2 作为电容触摸输入

01011 = P1.1 作为电容触摸输入

01100 = P1.0 作为电容触摸输入

01101 = P0.2 作为电容触摸输入

其他 = 系统保留

图注: R=可读 W=可写 -=未用 U=未实现位

注: T3 计数寄存器能够实现正常计数必须把 T3CLR 置 1。

6.3.3 T3 中断

T3 模块和触摸模块共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PT3。

T3 单独用作定时器时,T3 溢出后会使中断标志位 T3IF 置 1,如果使能位 T3IE 为 1,且全局中断和外设中断允许位为 1,将会相应 T3 中断。如果 IPEN 和 PT3 位均置 1,则 T3 为高优先级中断。

6.3.4 T3 的使用

启动 T3 的操作步骤

- 1、通过 OSCCTL 的 SCS<1:0>和 T3CTL 的 T3CS 位设置定时器 T3 的时钟源,通过 T3CKS<1:0>位设置定时器 T3 的分频比;
- 2、将 CTCTL0 的 T3CLR 置 1, T3 计数寄存器 T3H/T3L 退出复位状态;
- 3、给 T3 计数寄存器 T3H/T3L 设置初始值;
- 4、将 T3CTL 的 T3EN 位置 1 使能定时器 T3 开始计数;
- 注: 1. T3CLR 清零状态下计数器一直处于复位状态,任何的赋值操作都是无效的。
 - 2. T3CLR 置 1 状态下计数器正常计数,此时可以对 T3L/T3H 进行赋初值操作。
- 3.任何情况下赋 T3L/T3H 的初值都不能有 CLR 指令操作,必须用 MOV 指令实现赋初值操作,如果是 C 语言实现清零 T3L 或 T3H 操作,请用嵌汇编方法实现。

6.4 定时器/计数器 T4

T4 是一个 16 位的定时/计数器, T4 的低 8 位在寄存器 T4L 中, 高 8 位在寄存器 T4H

中,当 T4 计数值达到 65535 后,T4 的值再加 1 就会产生溢出,将 T4 中断标志位置 1。

T4 带有重载功能。当使能 T4 重载功能时, T4 计数器计数到 T4 重载寄存器中设置的值

时,T4 计数器将清零重新开始计数,且将T4 中断标志位置1。

T4 属于外部单元,因此在使用 T4 中断时,需将 PUIE 位置 1,使能外设中断。

6.4.1 T4 原理框图

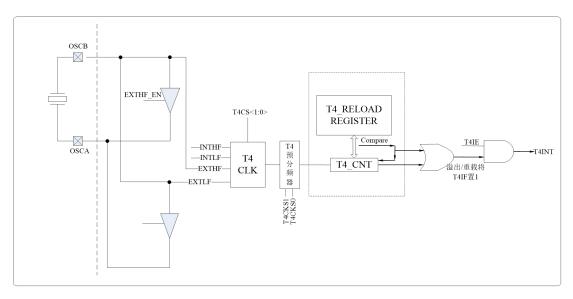
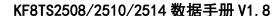


图 6.3 T4 原理框图

6.4.2 T4 相关寄存器

表 6.5 与 T4 相关的寄存器


地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0		
164H	T4CTL	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON		
161H	T4H		T4 高 8 位								
160H	T4L		T4 低 8 位								
163H	T4REH				T4 重载	寄存器高8位					
162H	T4REL		T4 重载寄存器低 8 位								

6.4.2.1 T4 控制寄存器

如寄存器 6.7 所示,T4 控制寄存器(T4CTL)用于启动/禁止 T4 以及选择 T4 模块的不同功能特性。

寄存器6.7: T4CTL: T4控制寄存器(地址: 164H)

	bit7							bit0
复位值 0000 0000	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

T4REN: T4 重载功能使能位

0 = 禁止 T4 重载功能 1 = 使能 T4 重载功能

HSPEN: 外部高频时钟休眠工作使能位

0 = 禁止 T4 在休眠模式下通过外部高频时钟工作 1 = 允许 T4 在休眠模式下通过外部高频时钟工作

T4CKS<1:0>: T4输入时钟预分频比选择位

11 = 1/8 倍预分频比 10 = 1/4 倍预分频比 01 = 1/2 倍预分频比 00 = 1/1 倍预分频比

LSPEN: 外部低频时钟休眠工作使能位

0 = 禁止 T4 在休眠模式下通过外部低频时钟工作 1 = 允许 T4 在休眠模式下通过外部低频时钟工作

T4CS<1:0>: T4 定时/计数模式选择

00 = T4 时钟为内部高频时钟 INTHF 01 = T4 时钟为内部低频时钟 INTLF 10 = T4 时钟为外部高频时钟 EXTHF 11 = T4 时钟为外部低频时钟 EXTLF

T4ON: T4 启动控制位

1 = 启动 T4 0 = 停止 T4

图注: R=可读 W=可写 -=未用 U=未实现位

6.4.2.2 T4 预分频器

如寄存器 6.1 所示, T4 具有四个预分频器选择项,允许对时钟输入进行 1、2、4、或 8 倍分频。T4CKS 位(T4CTL<5:4>)对预分频计数器进行控制。T4 预分频计数器不能直接进行读写操作,可通过写入 T4H 或 T4L 使预分频计数器清零。

6.4.2.3 T4 计数时钟选择

用户可以通过 T4CTL 寄存器的 T4CS<1:0>位来选择 T4 的计数时钟,K8TS25XX 系列提供 4 个时钟源,分别为内部高频时钟、内部低频时钟、外部高频时钟以及外部低频时钟。

6.4.3 T4 重载功能

置位 T4CTL 寄存器的 T4REN 位使能 T4 重载功能。通过设置 T4REH/T4REL 寄存器来设置 T4 的重载点。当设置 T4REH/T4REL 寄存器且使能重载功能后,T4 计数器从 0 开始计数,当计数到 T4REH/T4REL 寄存器设置的值时,T4 计数器清零并重新开始计数,T4IF置 1。

T4REN 位置 1 时会载入一次 T4REH/T4REL 寄存器的值,当置位 T4REN 且在 T4 计数过程中对 T4REH/T4REL 寄存器写入新值时,T4 模块会在下一次重载时载入新的重载点。

6.4.4 T4 中断

在两种情况下会使 T4 中断标志位置 1:

- 1. 当 T4 计数值达到 65535 后, T4 的值再加 1 就会产生溢出,将 T4 中断标志位置 1;
- 2. 当 T4 重载时, T4 中断标志位置 1。

6.4.5 T4 工作在休眠模式

当选择外部时钟信号作为 T4 的计数时钟时, T4 模块可以工作在休眠模式下。当使能 T4 中断时, 系统会在 T4 溢出或者重载时唤醒。

7 模数(A/D)转换模块

模数(A/D)转换模块可将模拟输入信号转换为 12 位二进制值。KF8TS2508/2510/2514 最多拥有 14 路 IO 模拟输入通道。转换器通过逐次逼近法将模拟输入信号转换为二进制值,并将转换结果存放到 12 位寄存器中。可通过软件方式选择 VDD、V_{REF} 或施加在 ADVRIN 引脚上的电压作为转换使用的参考电压。图 7.1 显示了 KF8TS2508/2510/2514 中 A/D 转换模块的结构框图。

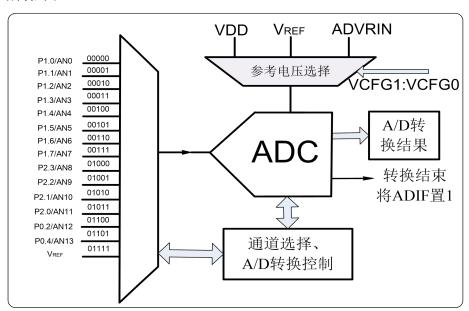


图 7.1 AD 模块结构框图

7.1 与 A/D 相关的寄存器

₹ 1 → AD 科及相及的 前 冊												
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0			
1FH	ADCCTL0	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN			
3FH	ADCCTL1	ADCALE N	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	-	ADCIM			
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0			
1DH	ANSEH	SSCIPIN	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8			
1EH	ADCDATA0H		AD 数据寄存器 0 高 8 位									
3EH	ADCDATA0L	AD 数据寄存器 0 低 8 位										

表 7-1 与 A/D 转换相关的寄存器

7.1.1 A/D 控制寄存器 0(ADCCTL0)

寄存器7.1: ADCCTL0: A/D控制寄存器0(地址: 1FH)

	bit7							bit0
复位值 0000 0000	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADLR: A/D 转换结果输出格式选择位

1 = 结果右对齐

0 = 结果左对齐

CHS<3:0>: 模拟通道选择位

0000 = 通道 00(AN0)

0001 = 通道 01(AN1)

0010 = 通道 02(AN2)

0011 = 通道 03(AN3)

0100 = 通道 04(AN4)

0101 = 通道 05(AN5)

0110 = 通道 06(AN6)

0111 = 通道 07(AN7)

1000 = 通道 08(AN8)

1001 = 通道 09(AN9)

1010 = 通道 10(AN10)

1011 = 通道 11(AN11)

1100 = 通道 12(AN12)

1100 = 通道 12(AN12) 1101 = 通道 13(AN13)

1111 = 参考电压 VREOUT 作为 AD 输入

START: A/D 转换状态位

1=A/D 转换正在进行,该位置 1 将启动 A/D 转换, 在转换结束后该位将被硬

件自动清零

0=A/D 转换结束或者未进行

ADEN: A/D 模块工作使能位

1 = 使能 A/D 转换模块工作

0=A/D 转换器关闭且不消耗工作电流

图注: R=可读 W=可写 -=未用 U=未实现位

7.1.2 A/D 控制寄存器 1(ADCCTL1)

寄存器7.2: ADCCTL1: A/D控制寄存器1(地址: 3FH)

	bit7							bit0
复位值 0000 0000	ADCALE N	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	-	ADCIM
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

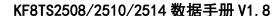
ADCALEN: A/D 失调校准使能位

0 = 关闭 A/D 校准

1 = 打开 A/D 校准

注: 1、自校准时间典型值为 5us。

2、ADEN 清零时需将 ADCALEN 位清零,关闭 AD 失调校准。


ADCS<2:0>: A/D 转换时钟选择位

000 = Fad = SCLK/2

001 = Fad = SCLK / 8

010 = Fad = SCLK / 32

x11= 系统保留

100 = Fad = SCLK / 4

101 = Fad= SCLK /16

110 = Fad = SCLK / 64

VCFG<1:0>: A/D 转换参考电压选择位

00 = 断开

01 = VDD 作为 ADC 参考电压

10 = ADVRIN 作为 ADC 参考电压

11 = V_{REF}作为 ADC 参考电压

ADCIM: A/D 工作电流选择位

0=A/D 工作电流较大

1=A/D 工作电流较小(建议配置为1,此时工作电流最小)

图注: R=可读 W=可写 -=未用 U=未实现位

注: Fad 为 A/D 转换时钟频率。

7.1.3 模拟/数字口选择寄存器(ANSEL/H)

寄存器7.3: ANSEH: 模拟/数字口设置寄存器(地址: 1DH)

	bit7							bit0	
复位值 0000 0000	SSCIPIN	保留	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-

寄存器7.4: ANSEL: 模拟/数字口设置寄存器(地址: 31H)

↔ 0. 41.	<u>bit7</u>							bit0	
复位值 0000 0000	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•

SSCIPIN: SSCI 通道选择位

0 = SDA 功能在 P0.0 口, SCL 功能在 P0.1 口

1 = SDA 功能在 P1.1 口, SCL 功能在 P1.0 口

ANS<13:0>: 引脚 AN13~AN0 分别配置为模拟或数字 I/O 口的控制位

1 = 将对应引脚配置为模拟口

0 = 将对应引脚配置为数字 I/O 口或者特殊功能引脚

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

7.2 通道的选择

如图 7.1 所示, KF8TS2508/2510/2514 中的 A/D 转换模块的输入可以选择 14 路来自外部的模拟信号,通过寄存器 ADCCTL0(如寄存器 7.1 所示)进行通道的选择。

7.3 模拟输入口的配置

当选择 AN0~AN13 作为 A/D 转换的输入时,需要将对应的引脚配置为模拟输入口。

KF8TS2508/2510/2514 数据手册 V1.8

通过将寄存器 ANSEL 的某位置 1 将对应的引脚配置为模拟口,然后把寄存器 TRx 的对应位置 1 把该引脚配置为输入口,此时该引脚被设置为模拟输入口。

注:如果某引脚被配置为模拟输入口,将会自动禁止有效地数字I/O、上拉电阻和电平变化中断。

7.4 A/D 转换参考电压的选择

KF8TS2508/2510/2514 中 ADC 模块的参考电压可以选择 3 种分别为: 电源电压(VDD)、内部参考电压 (V_{REF}) 和外部参考电压(ADVRIN)。通过寄存器 ADCCTL1(如寄存器 2 所示)的 VCFG<1:0>设置参考电压。

7.4.1 内部参考电压 VREF

KF8TS2508/2510/2514 内部有一个参考电压模块,使能该功能后,通过引脚P0.4/VREOUT 可输出稳定的 2V/3V/4V 参考电压 (VREOE=1),相关电气特性请参考章节15.6。

参考电压模块通过参考电压控制寄存器的高两位进行控制(VRECTL<1,3>),将 VREEN(VRECTL.1)位置 1 将打开参考电压模块,此时的 2V/3V/4V 参考电压可供芯片内部使用。如果再将 VREOE(VRECTL.3)位置 1,可使能内部 2V/3V/4V 参考电压输出到 P0.4/VREOUT 引脚。

注:如果内部使用参考电压 V_{REF} 时(用作 AD 参考电压和触摸专用比较器参考电压),不需要将寄存器 V_{REC} 化置 1。

7.4.2 参考电压寄存器(VRECTL)

寄存器7.7: VRECTL: 参考电压寄存器1(地址:2BH)

	bit7							bit0
复位值 0000 0000	VRESEL1	VRESEL0	保留	VRECKE N	VREOE	保留	VREEN	保留
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

VRESEL<1:0>:内部参考电压 VREOUT 选择位

00=保留

01 = 2V

10 = 3V

11=4V

VRECKEN: 参考电压工作时钟使能位

1 = 参考电压工作时钟使能

0 = 参考电压工作时钟禁止

注:内部参考电压模块工作时 VRECKEN 必须置 1

VREOE: 参考电压输出使能位

1= 允许参考电压输出

0 = 禁止参考电压输出

VREEN: 参考电压使能位

1 = 使能参考电压

0= 关闭参考电压

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位必须配置为0。

7.5 转换时钟的选择

完成一次 A/D 转换所需要的时间为 13Tad。如寄存器 7.2 所示,可通过软件方式设置 ADCS 位(ADCCTL1<6:4>)选择转换时钟源,共有 7 种时钟选项。

完成一次 AD 转换所需时间最快选择 SCLK/2, 为 2us。

7.6 输出格式

KF8TS2508/2510/2514 中 A/D 转换的结果为 12 位二进制数, A/D 转换结果寄存器为两个 8 位的寄存器。用户可以通过 ADLR(ADCCTL0.7)设置转换结果输出格式, ADLR 置 1 输出为右对齐, ADLR 清零输出为左对齐。如图 7.2 所示。

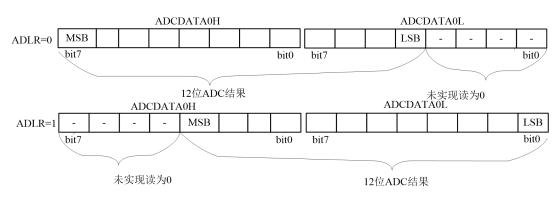


图 7.2 ADC 输出对齐方式

7.7 A/D 转换的启动和完成

先将 ADEN 位置 1, 然后将 START 位(ADCCR0.1)置 1 即可启动 A/D 转换。当转换结束时,A/D 模块将:

- 1. 将 START 位清零
- 2. 将 ADIF 位置 1
- 3. 如果使能 A/D 转换中断,则响应中断

可以采取在程序中将 START 位清零的方法中止当前的转换操作。在 A/D 转换采样全部结束之前,ADCDATA0H:ADCDATA0L 寄存器中的内容将不会被更新,而是仍旧保留前一次的转换结果。A/D 转换被中止后,需至少等待 2Tad 的延时时间后才能开始下一次数据采集。

7.8 复位的影响

器件复位将强制所有寄存器进入复位状态。因此,A/D模块将被关闭,任何进行中的转换操作被中止,ADCDATA0H:ADCDATA0L 寄存器中的值不变。

7.9 使用 A/D 转换器的设置

启动 A/D 转换器时的设置:

- 1. 选择 A/D 采样输入通道,设置 A/D 转换结果对齐方式(ADCCTL0);
- 2. 将对应的 A/D 采样输入通道设置为模拟输入模式 (ANSEH/ANSEL);
- 3. 如果需要使能 AD 的失调校准,将 ADCCTL1 寄存器的 ADCALEN 位置 1,清零禁止;
- 4. ADCCTL1 的 ADCIM 位置 1,选择工作小电流模式;
- 5. 选择参考电压和 A/D 采样时钟频率(ADCCTL1), ADEN 置 1 打开 A/D 转换;
- 6. 如果采用中断方式, 使能 A/D 转换中断;
- 7. 等待 A/D 所需的采集时间;
- 8. START 置 1 启动 A/D 转换;
- 9. 查询 A/D 是否转换完成(START=0)或进入 A/D 中断;
- 10. ADCDATA0H: ADCDATA0L 存放转换结果。

8 PWM 模块

8.1 工作原理

PWM 模块带有 8 位 PWM 模式和 16 位 PWM 模式,通过配置 T1CTL 寄存器的 T1RLD 位,可以实现 PWM 模式的切换。PWM 模式相关信息如下表所示:

火 0-11 W W 大力	人们人口心化			
PWM 模式	PWM 输出	T1CTL_T1RLD	周期寄存器	占空比寄存器
8位 PWM	PWM1	T1RLD=0	PP1	PWM1L
8 1 <u>1√</u> P W W	PWM2	T1RLD=0	PP2	PWM2L
	PWM21	T1RLD=1	<pp2:pp1></pp2:pp1>	<pwm2l:pwm1l></pwm2l:pwm1l>
16 位 PWM	PWM22	T1RLD=1	<pp2:pp1></pp2:pp1>	<pwm22:pwm12></pwm22:pwm12>
10 1 <u>1/2</u> P W WI	PWM23	T1RLD=1	<pp2:pp1></pp2:pp1>	<pwm23:pwm13></pwm23:pwm13>
	PW/M24	T1R1 D=1	<pd2.dd1></pd2.dd1>	<pw m14="" m24.pw=""></pw>

表 8-1 PWM 模式相关信息表

8.1.1 16 位 PWM 模式

图 8.1 为 PWM21 的逻辑框图。PWM22、PWM23 和 PWM24 原理和 PWM21 完全一致。 <PP2:PP1>为 PWM21 的周期寄存器,<PWM2L:PWM1L>为占空比设置寄存器;使用 PWM 时需要将定时器 1 分配给 PWM 做定时用;(8 位 PWM 模式下,T1L、T1IE 和 T1IF 分配给 PWM1,T1H 分配给 PWM2)。

启动 PWM21 后, 当<T1H:T1L>计数值和<PP2:PP1>相等时, PWM21 输出引脚被置 1, 此时<T1H:T1L>被清 0,重新开始计数,当<T1H:T1L>的计数值和<PWM2L:PWM1L>相等时, PWM21 输出引脚清 0 (如图 8.2 所示)。改变<PP2:PP1>和<PWM2L:PWM1L>的值可产生不同的 PWM21 周期和 PWM21 占空比。

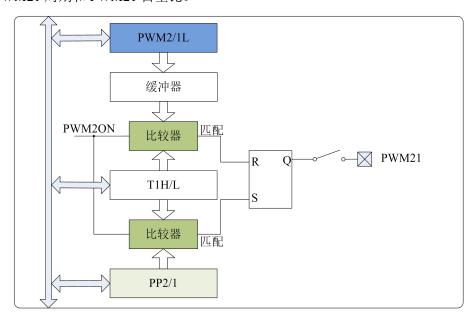


图 8.1 PWM21 逻辑框图

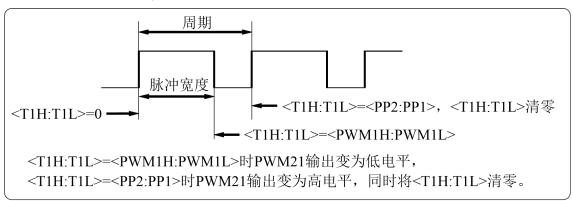


图 8.2 PWM21 输出波形图

8.1.2 8 位 PWM 模式

图 8.3 为 PWM1 的逻辑框图。PWM2 原理和 PWM1 完全一致。

PP1 为 PWM1 的周期寄存器, PWM1L 为占空比设置寄存器; 使用 PWM 时需要将定时器 1 分配给 PWM 做定时用; T1L、T1IE 和 T1IF 分配给 PWM1(T1H 分配给 PWM2)。

启动 PWM1 后,当 T1L 计数值和 PP1 相等时,PWM1 输出引脚被置 1,此时 T1L 被清 0,重新开始计数,当 T1L 的计数值和 PWM1L 相等时,PWM1 输出引脚清 0 (如图 8.4 所示)。 改变 PP1 和 PWM1L 的值可产生不同的 PWM1 周期和 PWM1 占空比。

图 8.3 PWM1 逻辑框图

KF8TS2508/2510/2514 数据手册 V1.8

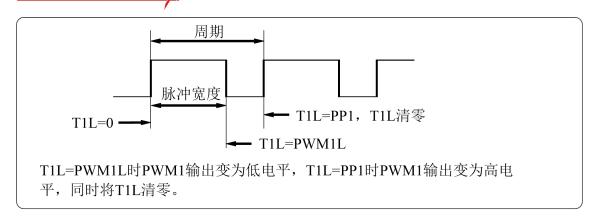


图 8.4 PWM1 输出波形图

8.2 PWM 相关的寄存器

表 8-2 与 PWM 相关的寄存器

				•	1H/4H						
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0		
13H	PWM1L		PWM1 占空比设置寄存器								
16H	PP1		PWM1 周期寄存器								
32H	PP2		PWM2 周期寄存器								
33H	PWM2L				PWM2 占空比	设置寄存器					
10H	TICTL	T1RLD	TIRLD TIGC TICKSI TICKS0 TIOSCEN $\overline{T1SY}$ TICS						TION		
15H	PWMCTL	PWM24ON	PWM24ON PWM23ON PWM22ON PWM2ON					-	PWM10N		
65H	PWM22			PV	WM22 占空比设	置寄存器高8位					
62H	PWM12			PV	WM22 占空比设	置寄存器低8位					
66H	PWM23			PV	WM23 占空比设	置寄存器高8位					
63H	PWM13			PV	WM23 占空比设	置寄存器低8位	•				
69H	PWM24			PV	WM24 占空比设	置寄存器高8位					
68H	PWM14			PV	WM24 占空比设	置寄存器低8位					

8.2.1 PWM1/2 控制寄存器

寄存器8.1: PWMCTL: PWM启动控制寄存器(地址: 15H)

	bit7							bit0
复位值	PWM24O	PWM23O	PWM22O	PWM2ON	保留	保留	保留	PWM1ON
0000 0000	N	N	N	1 WWZOIN	冰田	水田	水田	1 WMION
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PWM24ON: PWM24 启动控制位

1 = 启动 PWM24

0 = 禁止 PWM24

PWM23ON: PWM23 启动控制位

1 = 启动 PWM23

0 = 禁止 PWM23

PWM22ON: PWM22 启动控制位

1 = 启动 PWM22

0 = 禁止 PWM22

PWM2ON: PWM2 或 PWM21 启动控制位

1 = 启动 PWM2 或 PWM21

0 = 禁止 PWM2 或 PWM21

PWM1ON: PWM1 启动控制位

1 = 启动 PWM1 0 = 禁止 PWM1

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位必须配置为0

8.2.2 PWM 周期

PWM 周期通过<PP2:PP1>进行设置,<PP2:PP1>由 2 个 8 位的寄存器组成,其值可设置为 0~65535 (8 位 PWM 模式下,只是用 PP2 或 PP1 寄存器,其值可设置为 0~255)。

以 PWM21 为例, PWM 周期通过式 8.1 进行计算。

★式 8.1: PWM周期 = (<PP2:PP1>+1)·Tpwm

注: 当T1CLKEN=0时 Tpwm = 4·Tsys·(T1预分频比)

当T1CLKEN=1时 Tpwm = Tinthf·(T1预分频比)

寄存器8.2: PP1: PWM1周期控制寄存器(地址:16H)

	bit7							bit0
复位值 [1111 1111]	PP17	PP16	PP15	PP14	PP13	PP12	PP11	PP10
	R/W							

PP2: PWM2周期控制寄存器(地址:32H)

	bit7							bit0
复位值 [1111 1111]	PP27	PP26	PP25	PP24	PP23	PP22	PP21	PP20
	R/W							

图注: R=可读 W=可写 -=未用 U=未实现位

8.2.3 PWM 占空比

PWM21 占空比通过<PWM2L:PWM1L>进行设置;

PWM22 占空比通过<PWM22:PWM12>进行设置;

PWM23 占空比通过<PWM23:PWM13>进行设置;

PWM24 占空比通过<PWM24:PWM14>进行设置;

以 PWM21 为例,脉冲宽度和占空比通过式 8.2 和式 8.3 计算:

★ 式8.2: 脉冲宽度 = <PWM2L:PWM1L>·Tpwm

注: 当T1CLKEN = 0时, Tpwm = 4·Tsys·(T1预分频比) 当T1CLKEN = 1时, Tpwm = TINTHF·(T1预分频比)

KungFu[®]

KF8TS2508/2510/2514 数据手册 V1.8

寄存器8.3: PWM1L: PWM1占空比设置寄存器(地址: 13H)

bit7 bit0 复位值 bit2 bit0 bit7 bit6 bit5 bit4 bit3 bit1 xxxx xxxx R/W R/W R/W R/W R/W R/W R/W R/W

PWM2L: PWM2占空比设置寄存器(地址: 33H)

bit7 bit0 复位值 bit7 bit1 bit6 bit5 bit4 bit3 bit2 bit0 xxxx xxxx R/W R/W R/W R/W R/W R/W R/W R/W

图注: R=可读 W=可写 -=未用 U=未实现位

8.3 PWM 分辨率

分辨率决定在给定周期内的占空比数。例如,10位分辨率将产生1024个离散的占空比,8位分辨率产生256个离散的占空比。分辨率的计算公式如式8.4所示。

8.4 PWM 中断

8 位 PWM 模式下, PWM2 有一个专门的中断使能位 PWM2IE 和中断标志位 PWM2IF, 而 PWM1 和定时器 T1 共用中断使能位 T1IE 和中断标志位 T1IF。

16 位 PWM 模式下, PWM2x 的中断使能位和中断标志位共用, 使用 PWM2IE/PWM2IF 或 T1IE/T1IF 均可。

当<T1H:T1L>的计数值与<PP2:PP1>的值匹配后,其对应的输出引脚变为高电平,同时将<T1H:T1L>清 0,将 T1IF/PWM2IF 置 1,如果允许 T1 或 PWM2 中断,将会转入对应的中断子程序中。

8.5 PWM 输出引脚

2路8位PWM(PWM1和PWM2)的输出引脚可以通过T3CTL寄存器的PWMS位选择:PWMS=0时,P0.2作为PWM1的输出引脚,P1.0作为PWM2的输出引脚;PWMS=1时,P0.0作为PWM1的输出引脚,P0.1作为PWM2的输出引脚。

使用 4 路 16 位 PWM(PWM21/22/23/24)时,需要将 T3CTL 寄存器的 PWMS 位清零,T1CTL 寄存器的 T1RLD 位置 1; PWM21 位于 P0.2 引脚,PWM22 位于 P01.0 引脚,PWM23 位于 P1.1 引脚,PWM24 位于 P01.2 引脚。

表 8-3 16 位 PWM 相关信息

16 位 PWM	引脚位置	使能位	周期寄存器	占空比寄存器
PWM21	P0.2	PWM2ON	PP2:PP1	PWM2L:PWM1L
PWM22	P1.0	PWM22ON	PP2:PP1	PWM22:PWM12
PWM23	P1.1	PWM23ON	PP2:PP1	PWM23:PWM13

KF8TS2508/2510/2514 数据手册 V1.8

	/			
PWM24	P1.2	PWM24ON	PP2:PP1	PWM24:PWM14

8.6 休眠模式下的操作

在休眠模式下,T1 寄存器将不会递增并且模块的状态将保持不变。PWM 输出引脚电平保持不变(如果输出为高电平,则保持高电平,如果为低电平保持低电平)。当器件被唤醒时,T1 将从原来的状态继续工作。

8.7 复位的影响

任何复位都会将所有端口强制为输入模式,并强制 PWM 使用的寄存器进入其复位状态。

8.8 PWM 使用方法

PWM 工作的设置应按照以下步骤:

- 1、 通过 PWMPIN 设置选择 PWM 输出引脚。
- 2、 将 PWM 输出引脚对应的 I/O 口方向控制位 TRx 置 1,禁止 PWM 引脚的输出驱动器。
- 2、 赋 PP2/PP1 寄存器的初值以设置 PWM 周期。
- 3、 赋 PWM2L/PWM1L(PWM22/PWM12、PWM23/PWM13、PWM24/PWM14)寄存器的初值以设置 PWM 的占空比。
- 4、 配置并启动定时器/计数器 T1:
 - •配置 T1CS 位和 T1CLKEN 位选择 T1 的计数时钟(一般选择内部时钟);
 - 配置 T1CTL 寄存器的 T1CKS1 和 T1CKS0 以选择 T1 的预分频比;
 - 将 T1L/H 清 0;
 - 将 T1CTL 寄存器的 T1ON 位置 1 以启动 T1。
- 5、 将 PWMCTL 寄存器的 PWMxON 位置 1 以启动对应 PWM 输出。
- 6、 将 TRx 位清 0 使能 PWM 引脚的输出驱动器。

9 SSCI 模块

9.1 概述

KF8TS2508/2510/2514 包含一个 SSCI(Synchronous Serial Communication interface)同步串行端口,也即 I2C(Inter Intergrated Circuit)接口模式。它是用于其他外设或单片机进行通信的串行接口。

SDA 和 SCL 可通过 ANSEH 寄存器的 SSCIPIN 位分配到不同的引脚。当 SSCIPIN=0 时, SDA 分配到 P0.0 口, SCL 分配到 P0.1 口; 当 SSCIPIN=1 时, SDA 分配到 P1.1 口, SCL 分配到 P1.0 口。

9.2 SSCI 相关寄存器

表 9-1 与 SSCI 相关的寄存器

			• -	•					
地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
128H	SSCICTL0	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD3	SSCIMOD 2	SSCIMOD 1	SSCIMOD 0
12AH	SSCICTL1	SSCICALLE N	SSCIACKST A	SSCIACKD AT	SSCIACKEN	SSCIRCEN	STOPEN	RESTARTE N	STARTEN
12BH	SSCISTA	-	-	SSCIDA	SSCISTOP	SSCISTART	SSCIRW	SSCIUA	SSCIBUF
12CH	SSCIBUF			SS	CI 数据接收约	爰冲/发送寄存	器		
12EH	SSCIADD				SSCI 的 I2C	地址寄存器			
IZEH	SSCIMSK	SSCIMSK7	SSCIMSK6	SSCIMSK5	SSCIMSK4	SSCIMSK3	SSCIMSK2	SSCIMSK1	SSCIMSK0
1DH	ANSEH	SSCIPIN	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8

9.2.1 SSCI 控制寄存器 0(SSCICTL0)

寄存器12.1: SSCICTL0: SSCI控制寄存器0(地址:128H)

	bit /							b1t0	
复位值	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD	SSCIMOD	SSCIMOD	SSCIMOD	l
0000 0000	SSCIWCFL	SSCIOV	SSCIEN	SSCICKI	3	2	1	0	ı
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SSCIWCFL: 写冲突检测位

1 = 正在发送前一个字时,又有数据写入SSCIBUF 寄存器(必须用软件清零)

0 = 无冲突

SSCIOV: 接收溢出指示位

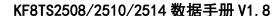
1 = SSCIBUFR中仍保存前一数据时,又接收到一个新的字节。SSCIOV 在发送模式下被忽略。两种模式下都必须用软件将SSCIOV 清零。

0= 无溢出

SSCIEN: 同步串行端口使能位

1= 使能串行端口并将SDA 和SCL 引脚配置为串行端口引脚

0 = 禁止串行端口并将这些引脚配置为I/O 端口引脚


在两种模式下, 当使能时, 这些引脚必须被正确配置为输入或输出。

SSCICKP: 时钟极性选择位

1 = 使能时钟

0=保持时钟为低电平(时钟低电平时间延长)。(用于确保数据建立时间。)

SSCIMOD<3:0>: 同步串行端口模式选择位

其他 = 保留

0110 = I2C从动模式, 7 位地址

0111 = I2C从动模式, 10 位地址

1000 = I2C主控模式, 时钟=SCLK/(4*(SSCIADD+1))

1001 = 允许SSCIMSK寄存器读写操作

1010 = 保留

1011 = I2C固件控制主控模式(从动空闲模式)

1100 = 保留

1101 = 保留

1110 = I2C从动模式, 7 位地址,并允许启动位和停止位中断

1111 = I2C 从动模式, 10 位地址,并允许启动位和停止位中断

图注: R=可读 W=可写 -=未用 U=未实现位

9.2.2 SSCI 控制寄存器 1(SSCICTL1)

寄存器12.2: SSCICTL1: SSCI控制寄存器1(地址:12AH)

	bit ⁷ /							bitO	
复位值	SSCICAL	SSCIACK	SSCIACK	SSCIACK	SSCIRCE	STOPEN	RESTART	STARTEN	ı
0000 0000	LEN	STA	DAT	EN	N	STOPEN	SEN	STARTEN	l
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	

SSCICALLEN:广播呼叫使能位(仅限 I2C 从动模式)

1=允许在SSCISR 中接收到广播呼叫地址(0000H)时产生中断

0=禁止广播呼叫地址

SSCIACKSTA:应答状态位(仅限于I2C主控模式)

在主控发送模式下:

1=未接收到来自从动器件的应答。

0=已接收到来自从动器件的应答

SSCIACKDAT:应答数据位(仅限于I2C主控模式)

在主控接收模式下:用户在接收完成后发送的应答序列的值

1 = 不应答

0 = 应答

SSCIACKEN: 应答序列使能位(仅限I2C主控模式)

在主控接收模式下:

1 = 在SDA 和SCL 引脚启动应答序列,发送SSCIACKDAT数据位。由硬件自动清零。

0 = 应答序列空闲

SSCIRCEN: 接收使能位(仅限I2C主控模式)

1 = 使能I2C接收模式

0 = 接收空闲

STOPEN: 停止条件使能位(仅限 I2C 主控模式)

1 = 在SDA 和SCL 引脚启动停止条件。由硬件自动清零。

0 = 停止条件空闲

RESTARTEN: 重复启动条件使能位(仅限I2C主控模式)

KungFu®

KF8TS2508/2510/2514 数据手册 V1.8

1=在SDA 和SCL 引脚启动重复启动条件。由硬件自动清零。

0=重复启动条件空闲

STARTEN: 启动条件使能位(仅限I2C主控模式)

在主控模式下:

1=在SDA 和SCL引脚启动条件。由硬件自动清零。

0=启动条件空闲

图注: R=可读 W=可写 -=未用 U=未实现位

注: 对于SSCIACKEN、SSCIRCEN、STOPEN、RESTARTEN 和STARTEN 位:如果 I2C模块不处在空闲模式,此位可能无法被置1(没有假脱机(spooling))且可能无法对S SCIBUFR 进行写操作(禁止写SSCIBUFR)。

9.2.3 SSCI 状态寄存器 (SSCISTA)

寄存器12.3: SSCISTA: SSCI状态寄存器(地址:12BH)

	bit7							bit0
复位值 [-	-	SSCIDA	SSCISTOP	SSCISTA RT	SSCIRW	SSCIUA	SSCIBUF
0000 0000					K1			
	R/W	R/W	R	R	R	R	R	R

SSCIDA: 数据/ 地址位

1 = 表示上次接收或发送的字节是数据

0 = 表示上次接收或发送的字节是地址

SSCISTOP: 停止位

当禁止SSCI 模块或上次检测到启动位时,该位被清零。

SSCIEN 被清零。

1 = 表示上次检测到了停止位(此位在复位时为0)

0 = 表示上次没有检测到停止位

SSCISTART: 启动位

当禁止SSCI 模块或上次检测到停止位时,该位被清零。

SSCIEN 被清零。

1=表示上次检测到了启动位(此位在复位时为0)

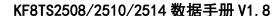
0 = 表示上次没有检测到启动位

SSCIRW: 读/写信息位

该位用来保存在上次地址匹配后的SSCIRW 位信息。此位仅在地址匹配与遇到下一个启动位、停止位或SSCIACK 位之间有效。

I2C主模式下

1= 读


0 = 5

I2C从模式下

1 = 发送正在进行

0= 发送未进行

该位与STARTEN、RESTARTEN、STOPEN、SSCIRCEN或SSCIACKEN位的或运算结果指示SSCI是否处于空闲状态。

SSCIUA: 更新地址位(仅10位I2C模式)

1 = 表示用户需要更新SSCIADD 寄存器中的地址

0 = 不需要更新地址

SSCIBUF: 缓冲器满状态位

接收:

1 = 接收完成, SSCIBUFR满

0 = 接收未完成, SSCIBUFR空

发送:

1 = 正在发送, SSCIBUFR满

0 = 发送完成, SSCIBUFR空

图注: R=可读 W=可写 -=未用 U=未实现位

注: bit6和bit7为系统保留位,复位均为0,请勿对该两位写1,否则SSCI模块无法正常工作。

9.2.4 SSCI 屏蔽寄存器 (SSCIMSK)

寄存器12.4: SSCIMSK: SSCI屏蔽寄存器(地址:12EH)

	bit7							bit0
复位值	SSCIMSK							
1111 1111	7	6	5	4	3	2	1	0
	R/W							

SSCIMSK<7:1>:屏蔽位

1 = 接收到的地址的bit n 与SSCIADD<n> 比较以检测I²C的地址匹配情况

0 = 接收到的地址的bit n 不用于检测I2C的地址匹配情况

SSCIMSK<0>: 在I2C从动模式下,10位地址的屏蔽位

在I2C 从动模式, 10位地址(SSCIMOD<3:0>=0111或1111)条件下:

1 = 将接收到的地址的bit 0位与SSCIADD<0> 相比较以检测I2C的地址匹配情况

0 = 接收到的地址的bit 0位不用于检测I2C的地址匹配情况

在I2C从动模式,7位地址条件下,该位为无关位

图注: R=可读 W=可写 -=未用 U=未实现位

注:当SSCICTL0位SSCIMOD<3:0>=1001时,不能对SSCIADD寄存器进行读和写,任何对SSCIADD寄存器(地址也是12EH)的读和写操作均是对SSCIMSK寄存器操作。

9.2.5 SSCI I2C 地址寄存器 (SSCIADD)

在10位I2C从动模式下,该地址寄存器是复用的。

寄存器12.5: SSCIADD: I2C地址寄存器(地址:12EH)

	bit'/							b1t0	
复位值	SSCIADD								
1111 1111	7	6	5	4	3	2	1	0	
	R/W								

10位从动模式下——高地址字节:

SSCIADD<7:3>: 未使用,SSCIADD存放高地址字节时,未使用这5位,为无关位。主器件发送的位模式由I2C规范制定必须等于11110,但是这这些位由硬件进行比较且不受该寄存器中的值的影响

SSCIADD<2:1>: 保存10位地址的高两位。 SSCIADD0: 未使用,为无关位。

10位从动模式下——低地址字节:

SSCIADD<7:0>: 10位地址的低8位

7位从动模式下:

SSCIADD<7:1>: 7位地址

SSCIADD0: 未使用,为无关位

图注: R=可读 W=可写 -=未用 U=未实现位

注:在I2C模式下,不支持SSCIADD寄存器的值为0、1或2的情况。

9.2.6 模拟/数字口选择寄存器(ANSEH)

寄存器9.6: ANSEH: 模拟/数字口设置寄存器(地址: 1DH)

— 15 11.	bit7							bit0
复位值 0000 0000	SSCIPIN	保留	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SSCIPIN: SSCI 通道选择位

0 = SDA 功能在 P0.0 口, SCL 功能在 P0.1 口

1 = SDA 功能在 P1.1 口, SCL 功能在 P1.0 口

ANS<13:8>: 引脚 AN13~AN8 分别配置为模拟或数字 I/O 口的控制位

1 = 将对应引脚配置为模拟口

0 = 将对应引脚配置为数字 I/O 口或者特殊功能引脚

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写0,不能写1。

9.3 I2C 模式

- ◆ 多主机模式:可用作主设备或者从设备
- ◆ I2C 主设备产生时钟, 起始和停止信号
- ◆ 检测7位和10位地址

9.3.1 工作原理

I2C模式下的SSCI 能实现全部从动功能(除广播呼叫支持外),且硬件支持启动位和停止位中断,以便于固件实现主控功能。SSCI模式实现标准模式规范以及7位和10位寻址。有两个引脚用于数据传输: P0.1/ SCL引脚作为时钟线(SCL),而P0.0/SDA引脚作为数据线。通过将SSCI使能位SSCIEN(SSCICTL0<5>)置1以使能SSCI模块的功能。

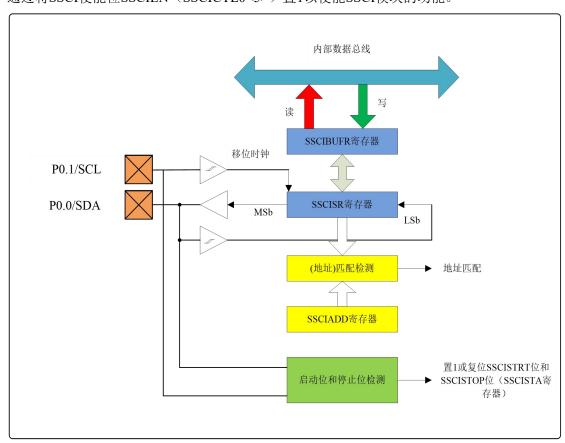


图9.1 I2C模式方框图

SSCI模块有8个寄存器用于I2C操作,这7个寄存器是:

- SSCI控制寄存器(SSCICTL0)
- SSCI控制寄存器1 (SSCICTL0)
- SSCI状态寄存器(SSCISTA)
- 串行接收/发送缓冲器(SSCIBUFR)
- SSCI 移位寄存器(SSCISR)——不可直接访问
- SSCI 地址寄存器(SSCIADD)
- SSCI 屏蔽寄存器 (SSCIMSK)

SSCICTL0 寄存器用于控制I2C 的工作。可通过设置四个模式选择位(SSCICTL0<3:0>)

选择以下I2C 模式之一:

- ► I2C 从动模式 (7 位地址)
- ▶ I2C 从动模式(10 位地址)
- ▶ I2C 从动模式(7 位地址),允许启动位和停止位中断以支持固件主控模式
- ▶ I2C 从动模式(10 位地址),允许启动位和停止位中断以支持固件主控模式
- ▶ 允许I2C 启动位和停止位中断以支持固件主控模式而从动模式空闲

任何I2C 模式的选择,在SSCIEN置1后都会强制SCL和SDA引脚为漏极开路(假定通过编程将相应的TR1位置1,使这些引脚成为输入引脚)。必须在SCL和SDA引脚上外接上拉电阻,才能使I2C模块正常工作。

9.3.2 I2C 从动模式

在从动模式下,SCL 引脚和SDA 引脚必须被配置为输入(TR1<1:0> 置1)。必要时 SSCI 模块将用输出数据改写输入状态(从发送器)。

当地址匹配或在地址匹配后发送的数据被接收时,硬件会自动产生一个应答(ACK)脉冲,并把当时SSCISR寄存器中接收到的值装入SSCIBUFR寄存器。

某些条件会使SSCI 模块不发出此ACK(低电平有效)脉冲。这些条件包括(之一或全部):

- 1) 在接收到数据前,缓冲器满标志位SSCIBUF(SSCISTA<0>)置1。
- 2) 在接收到数据前,溢出标志位SSCIOV(SSCICTL0<6>)置1。

在这些情况下,SSCISR寄存器的值不会载入SSCIBUFR,但是SSCIIF位会置1。表9-2显示了当已知SSCIBUF位和SSCIOV位的状态时,接收到数据发送字节时产生的结果。阴影单元显示了当用户软件没有正确将溢出状态清零时的情况。当SSCIOV位通过软件清零时,通过读SSCIBUFR寄存器可以将标志位SSCIBUF清零。

				SSCIIF 位置 1(如	
接收到传输数	据时的状态位	SSCISR 数据存	产生 ACK 脉	果允许 SSCI 中断,	
		入 SSCIBUFR	冲	还将产生 SSCI 中	
SSCIBUF	SSCIOV	/\ SSCIDOT K	11	断)	
			-	<u>+</u>	
0	0	有	有	有	
1	0	无	无	有	
1	1	无	无	有	
0	1	无	无	有	

表 9-2 接收数据后的动作

注:阴影单元显示了当用户软件没有正确将溢出状态清零时的情况。

9.3.2.1 寻址

一旦SSCI模块被使能,它就会等待启动条件发生。在7位地址模式下,当启动条件发生后,8位数据被移入SSCISR寄存器。在时钟(SCL)线的上升沿采样所有的输入位。在第8个时钟(SCL)脉冲的下降沿寄存器SSCISR<7:1>的值会和SSCIADD地址寄存器的值比较。如果地址匹配,并且SSCIBUF和SSCIOV都被清零,会发生下列事件:

- 1) SSCISR寄存器的值被装入SSCIBUFR寄存器。
- 2) 缓冲器满标志位SSCIBUF被置1。
- 3)产生ACK脉冲。
- 4) 在第9个SCL脉冲的下降沿, SSCI中断标志位SSCIIF被置1(如果允许中断,则产生

中断)。

在10位地址模式下,从控制器需要收到两个地址字节(图9.3)。第一个地址字节的高5 位将指定这是否是一个10位地址。SSCIRW位(SSCISTA<2>)必须指定写操作,这样从控制器才能接收到第二个地址字节。 对于10位地址,第一个字节等于"1111 0 A9 A8 0",其中A9和A8是该地址的两个最高有效位。

10位地址的工作步骤如下,其中7-9步是针对从动发送器而言的:

- 1)接收地址的第一个(高)字节(SSCIIF位、SSCIBUF位和SSCIUA位置1)。
- 2) 用地址的第二个(低)字节更新SSCIADD寄存器(SSCIUA位清零并释放SCL线)。
- 3) 读SSCIBUF寄存器(SSCIBUF位清零),并将标志位SSCIIF清零。
- 4)接收地址的第二个(低)字节(SSCIIF位、SSCIBUF位和SSCIUA位置1)。
- 5) 用地址的第一个(高)字节更新SSCIADD寄存器;如果匹配,则释放SCL线,此时将会清零SSCIUA位。
- 6) 读SSCIBUFR寄存器(SSCIBUF位清零)并将标志位SSCIIF清零。
- 7) 接收重复启动条件。
- 8) 接收地址的第一个(高)字节(SSCIIF位和SSCIBUF位置1)。
- 9) 读SSCIBUFR寄存器(SSCIBUF位清零)并将标志位SSCIIF清零。

9.3.2.2 接收

当地址字节的SSCIRW状态位清零并发生地址匹配时,SSCISTA寄存器中的SSCIRW位清零。接收到的地址被装入SSCIBUFR寄存器。

当发生地址字节溢出时,则不会产生应答脉冲(ACK)。溢出条件是指SSCIBUF位置1,或者SSCIOV位(SSCICTL0<6>)置1。这是一个由于用户固件导致的错误状态。

每个数据传输字节都会产生SSCI中断。标志位SSCIIF必须用软件清零。通过SSCISTA 寄存器可以确定该字节的状态。

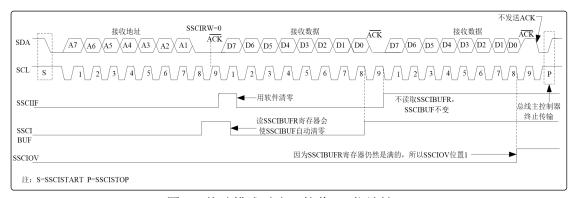


图9.2 从动模式时序(接收,7位地址)

KungFu[®]

KF8TS2508/2510/2514 数据手册 V1.8

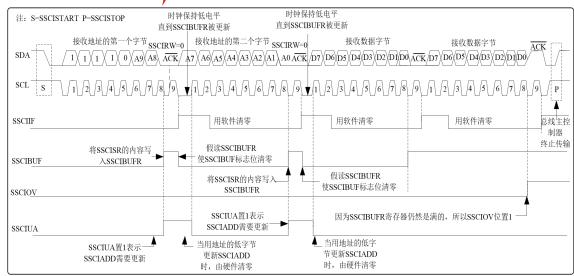


图 9.3 从动模式时序(接收,10 位地址)

从动接收设置:

- 1、通过 SSCIMOD<3:0>位选择 I2C 工作模式
 - 0110 = I2C 从动模式, 7 位地址
 - 0111 = I2C 从动模式, 10 位地址
 - 1011 = I2C 固件控制主控模式(从动空闲模式)
 - 1110 = I2C 从动模式, 7 位地址,并允许启动位和停止位中断
 - 1111 = I2C 从动模式, 10 位地址, 并允许启动位和停止位中断
- 2、设置SSCIADD寄存器,设置从机地址,仅高七位有效;
- 3、清零SSCISTA寄存器的各标志,包括SSCIDA、SSCIRW、SSCIBUF等。
- 4、设置SDA引脚为输入,SCL为输入;
- 5、清零SSCIIF标志,如果需要中断打开各终端使能位;
- 6、使能SSCIEN,开始接收数据,等待地址匹配;如果地址匹配,则SSCISTA寄存器的SSCIRW位清零。SSCISR寄存器的值被装入SSCIBUFR寄存器;
- 7、缓冲器满标志位SSCIBUF被置1;产生 ACK 脉冲信号;在第9个SCL脉冲的下降沿,SSCI中断标志位SSCIIF被置1,软件清零。

9.3.2.3 发送

当输入地址字节的SSCIRW位置1 并发生地址匹配时,SSCISTA寄存器的SSCIRW位被置1。接收到的地址被装入SSCIBUFR寄存器。 ACK脉冲在第9位上发送, SCL引脚保持低电平。发送数据必须被装入SSCIBUFR寄存器,同时也装入SSCISR寄存器。然后,应该通过将SSCICKP位(SSCICTL0<4>)置1来使能SCL引脚。主控制器必须在发出另一个时钟脉冲前监视SCL引脚。从控制器可以通过延长时钟低电平时间不与主控制器同步。8个数据位在SCL输入的下降沿被移出。这可以确保在SCL为高电平期间SDA信号是有效的。

每个数据传输字节都会产生SSCI中断。标志位SSCIIF必须用软件清零,SSCISTA寄存器用于确定字节的状态。标志位SSCIIF在第9个时钟脉冲的下降沿被置1。对于从发送器,来自主接收器的ACK脉冲将在第9个SCL输入脉冲的上升沿被锁存。若SDA线为高电平(无

ACK应答信号),则表示数据传输已完成。在这种情况下,如果从控制器锁存了ACK,将复位从动逻辑(复位SSCISTA寄存器),同时从控制器监视下一个启动位的出现。如果SDA线为低电平(ACK),则必须将下一个要发送的数据装入SSCIBUFR寄存器。 然后,通过将SSCICKP位(SSCICTL0<4>)置1使能SCL引脚。

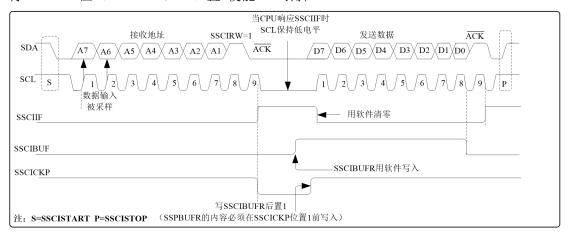


图 9.4 从动模式时序(发送,7位地址)

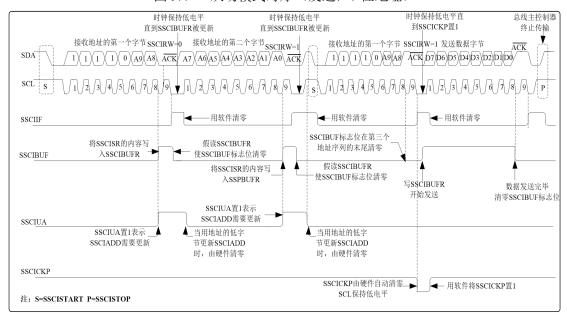


图 9.5 从动模式时序(发送,10位地址)

从动发送设置:

- 1、 通过 SSCIMOD<3:0>位选择 I2C 工作模式
 - 0110 = I2C 从动模式, 7 位地址
 - 0111 = I2C 从动模式, 10 位地址
 - 1011 = I2C 固件控制主控模式(从动空闲模式)
 - 1110 = I2C 从动模式, 7 位地址,并允许启动位和停止位中断
 - 1111 = I2C 从动模式, 10 位地址, 并允许启动位和停止位中断
- 2、设置SSCIADD寄存器,设置从机地址,仅高七位有效;
- 3、清零SSCISTA寄存器的各标志,包括SSCIDA、SSCIRW、SSCIBUF等。
- 4、设置SDA引脚为输出, SCL为输入;
- 5、清零SSCIIF标志,如果需要中断打开各终端使能位;

- 6、使能 SSCIEN, 当输入地址字节的 SSCIRW 位置 1 并发生地址匹配时, SSCISTA 寄存器的 SSCIRW 位被置 1。接收到的地址被装入 SSCIBUFR 寄存器。
- 7、ACK 脉冲在第 9 位上发送,SCL 引脚保持低电平。发送的数据装载到 SSCIBUFR 寄存器。
- 8、置 1SSCICKP 位使能 SCL 引脚。主控制器必须再发送另一个时钟脉冲前件事 SCL 引脚。从控制器可以通过延长时钟低电平时间不予主控制器同步。
 - 9、标志位 SSCIIF 在第 9 个时钟脉冲的下降沿被置 1。软件清零
- 10、对于从发送器,来自主接收器的ACK脉冲将在第9个SCL输入脉冲的上升沿被锁存。若SDA线为高电平(无ACK应答信号),则表示数据传输已完成。在这种情况下,如果从控制器锁存了ACK,将复位从动逻辑(复位SSCISTA寄存器),同时从控制器监视下一个启动位的出现。如果SDA 线为低电平(ACK),则必须将下一个要发送的数据装入SSCIBUFR寄存器。 然后,通过将SSCICKP位(SSCICTL0<4>)置1使能SCL引脚。

9.3.2.4 广播呼叫地址支持

在I2C 总线的寻址过程中,通常由启动条件后的第一个字节决定主器件将寻址哪个从器件。但广播呼叫地址例外,它能寻址所有器件。当使用这个地址时,理论上所有的器件都应该发送一个应答响应。

广播呼叫地址是根据I2C协议为特定目的保留的八个地址之一。它由全0组成,且SSCIRW=0。广播呼叫使能位SSCICALLEN(SSCICTL1<7>寄存器使能时,即可识别广播呼叫地址。检测到起始位后,8位数据会移入SSCISR,同时将该地址与SSCIADD进行比较。它还会与广播呼叫地址进行比较并用硬件设定。

如果与广播呼叫地址匹配, SSCISR的值将传输到SSCIBUFR, SSCIBUF标志位(第8 位)置1,并且SSCIIF中断标志位在第9 位(ACK位)的下降沿置1。

当响应中断时,可以通过读取SSCIBUFR的内容来判断中断源。该值可以用于判断地址 是特定器件的还是一个广播呼叫地址。

在10 位模式下,需要更新SSCIADD 以使地址的后半部分匹配,同时SSCIUA 位 (SSCISTA 寄存器)置1。如果SSCICALLEN位置1 时采样到广播呼叫地址,同时从器件被配置为10 位地址模式,则不再需要地址的后半部分,也不会将SSCIUA 位置1,从器件将在应答后开始接收数据如下图9.6所示。

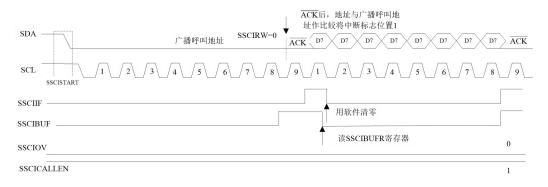


图9.6 从动模式广播呼叫地址时序(7或10位地址模式)

9.3.3 I2C 主控模式

主控模式通过固件在检测到启动条件和停止条件时产生中断来工作。停止(SSCISTOP)位和启动(SSCISTART)位在复位时或禁止SSCI模块时清零。停止(SSCISTOP)位和启动(SSCISTART)位会根据启动和停止条件翻转。当SSCISTOP位置1时,可以获得I2C总线的控制权;否则,停止(SSCISTOP)位和启动(SSCISTART)位都清零,总线处于空闲状态。

在主控模式下,SCL和SDA线通过清零相应的TR1<1:0>位来控制。输出电平始终为低电平,而与P1.<1:0>的值无关。因此当发送数据时,对于SDA线,必须将TR11置0(输出),对于SCL线,也要将TR1<0>位置0(输出)。同时SCL和SDA引脚上必须外接上拉电阻,才能使I2C模块正常工作。

下列事件会使SSCI中断标志位SSCIIF置1 (如果允许SSCI中断,则产生中断): 启动条件

- 停止条件
- 发送/接收到数据传输字节
- 应答发送
- 重复启动条件

可用从动模式空闲(SSCIMOD<3:0>=1011)或从动模式活动完成主控模式操作。当同时使能主控模式和从动模式时,需要使用软件区分中断源。

9.3.3.1 主控模式支持

通过设置SSCICTL0中的SSCIMOD<3:0>并将SSCIEN位置1可使能主控模式。一旦使能主控模式,

用户即可选择以下6 项操作:

- 1) 在SDA 和SCL 上发出一个启动条件。
- 2) 在SDA 和SCL 上发出一个重复启动条件。
- 3) 写入SSCIBUFR寄存器,开始数据/地址的发送。
- 4) 在SDA 和SCL 上产生停止条件
- 5) 将I2C 端口配置为接收数据。
- 6) 在接收到数据字节后产生应答条件。

注:

当配置为I2C主控模式时, SSCI模块不允许事件排队。例如,在启动条件结束前,不允许用户发出另一个启动条件并立即写SSCIBUFR寄存器以发起传输。这种情况下,将不会写入SSCIBUFR,SSCIWCFL 位将被置1,这表明没有发生对SSCIBUFR的写操作。图9.7 为I2C主模式框图。

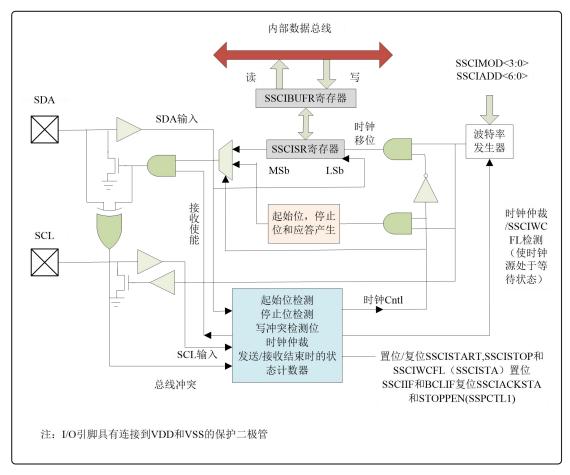


图9.7 I2C主模式框图

9.3.3.2 I2C 主模式操作

所有串行时钟脉冲和启动/停止条件均由主器件产生。停止条件或重复启动条件能结束传输。因为重复启动条件也是下一次串行传输的开始,因此不会释放I2C总线。在主控发送器模式下,串行数据通过SDA输出,而串行时钟由SCL输出。发送的第一个字节包括接收器件的地址(7位)和读/写(SSCIRW)位。在这种情况下,SSCIRW位将是逻辑0。串行数据每次发送8位。每发送一个字节,会收到一个应答位。启动和停止条件的输出表明串行传输的开始和结束。

在主控接收模式下,发送的第一个字节包括发送器件的地址(7 位)和SSCIRW位。在这种情况下,SSCIRW位将是逻辑1。因此,发送的第一个字节是一个7 位从器件地址,后面跟1 表示接收。串行数据通过SDA 接收,而串行时钟由SCL 输出。每次接收8 位串行数据。每接收到一个字节,都会发送一个应答位。启动和停止条件分别表明发送的开始和结束。

在I2C模式下,需要设置波特率发生器。波特率发生器的重载值位于SSCIADD寄存器的低7 位。当发生对SSCIBUFR的写操作时,波特率发生器将自动开始计数。如果指定操作完成(即,发送的最后一个数据位后面跟着ACK),内部时钟将自动停止计数,SCL 引脚将保持在其最后的状态。

下面是一个典型的发送事件序列:

1) 用户通过将启动使能位STARTEN (SSCICTL1寄存器) 置1 产生启动条件。

- 2) SSCIIF 位置1。在进行任何其他操作前, SSCI模块将等待所需的启动时间。
- 3) 用户将从器件地址装入SSCIBUFR进行发送。
- 4) 地址从SDA 引脚移出,直到发送完所有8 位为止。
- 5) SSCI模块移入来自从器件的ACK位,并将它的值写入SSCICTL1 寄存器的 SSCIACKSTA位。
- 6) SSCI模块在第9 个时钟周期的末尾将SSCIIF位置1,产生一个中断。
- 7) 用户将8 位数据装入SSCIBUFR。
- 8) 数据从SDA 引脚移出,直到发送完所有8 位为止。
- 9) SSCI模块移入来自从器件的ACK位,并将它的值写入SSCICTL1 寄存器的 SSCIACKSTA 位。
- 10) SSCI 模块在第9个时钟的末尾将SSCIIF 位置1,产生一个中断。
- 11) 用户通过将停止使能位(STOPEN)位(SSCICTL1寄存器)置1产生停止。
- 12) 一旦停止条件完成,将产生一个中断。

9.3.3.3 波特率发生器

在I2C主控模式下,波特率发生器的重载值位于SSCIADD 寄存器的低7位。当装载了该值后,波特率发生器将自动开始计数并递减至0,然后停止直到下次重载为止。BRG 会在每个指令周期(TCY)中的Q2 和Q4 时钟周期上进行两次减计数。在I2C 主控模式下,会自动重载BRG。例如,在发生时钟仲裁时,BRG 将在SCL 引脚采样到高电平时重载。如图9.8和图9.9 所示。

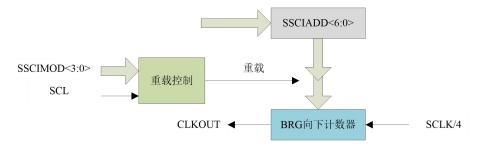


图 9.8 波特率发生器框图

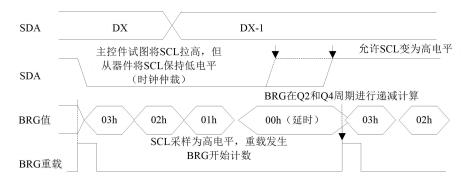
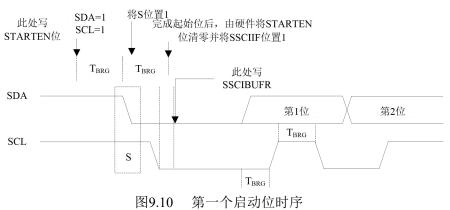


图 9.9 带有时钟仲裁的波特率发生器时序

9.3.3.4 I2C 主控模式启动条件时序

要发起启动条件,用户应将SSCICTL1寄存器的启动条件使能位STARTEN置1。当SDA和SCL引脚都采样为高电平时,波特率发生器重新装入SSCIADD<6:0>的内容并开始计数。当波特率发生器发生超时(TBRG)时,如果SCL和SDA都采样为高电平,则SDA引脚被驱动为低电平。当SCL为高电平时,将SDA驱动为低电平就是启动条件,将使SSCISTART位(SSCISTA寄存器)置1。随后波特率发生器重新装入SSCIADD<6:0>的内容并恢复计数。当波特率发生器超时(TBRG)时,SSCICTL1寄存器的STARTEN位将自动被硬件清零。波特率发生器暂停工作,SDA线保持低电平,启动条件结束。注意:


如果在启动条件开始时,SDA和SCL引脚已经采样为低电平,或者在启动条件期间,SCL在SDA线被驱动为低电平之前已经采样为低电平,则会发生总线冲突。总线冲突中断标志位BCLIF置1,启动条件中止,I2C模块复位到空闲状态。

SSCIWCFL状态标志

当启动序列进行时,如果用户写SSCIBUFR,则SSCIWCFL被置1,同时缓冲器内容不变(未发生写操作)。

注:

由于不允许事件排队,在启动条件结束之前,不能对SSCICTL1 的低5 位进行写操作。

9.3.3.5 I2C 主控模式重复启动条件时序

将RESTARTEN位(SSCICTL1寄存器)编程为高电平,并且I2C逻辑模块处于空闲状态时,就会产生重复启动条件。当RESTARTEN位置1时,SCL引脚被拉为低电平。当SCL引脚采样为低电平时,波特率发生器装入SSCIADD<6:0>的内容,并开始计数。在一个波特率发生器计数周期(TBRG)内SDA引脚被释放(其引脚电平被拉高)。当波特率发生器超时时,如果SDA 采样为高电平,SCL引脚将被拉高。当SCL引脚采样为高电平时,波特率发生器将被重新装入SSCIADD<6:0>的内容并开始计数。SDA和SCL必须在一个计数周期TBRG内采样为高电平。随后将SDA引脚拉为低电平(SDA=0)并保持一个计数周期TBRG,同时SCL为高电平。然后RESTARTEN位(SSCICTL1 寄存器)将自动清零,波特率发生器不会重载,SDA引脚保持低电平。一旦在SDA和SCL引脚上检测到启动条件,SSCISTART位(SSCISTA寄存器)将被置1。直到波特率发生器超时后,SSCIIF位才会置1。注:

芯旺微电子 - 108/160 - Chip**○N**

- 1) 有任何其他事件进行时,对RESTARTEN的编程无效。
- 2) 在重复启动条件期间,下列事件将会导致总线冲突:
 - 当SCL 由低电平变为高电平时, SDA 采样为低电平。
 - 在SDA 被拉低之前, SCL 变为低电平。这表示可能有另一个主器件正尝试发送数据1。

一旦SSCIIF 位被置1,用户便可以在7 位地址模式下将7 位地址写入SSCIBUFR,或者在10 位地址模式下写入默认的第一个地址字节。当发送完第一个8 位并接收到一个ACK后,用户可以发送另外8 位地址(10 位地址模式下)或8 位数据(7 位地址模式下)。

SSCIWCFL 状态标志

当重复启动序列进行时,如果用户写SSCIBUF,则SSCIWCFL 被置1,同时缓冲器内容不变(未发生写操作)。

注:由于不允许事件排队,在重复启动条件结束之前,不能对SSCICTL1 的低5位进行写操作。

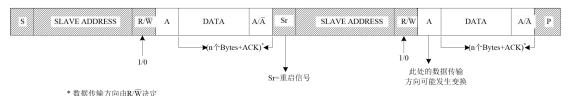


图9.11 I2C协议复合数据帧格式

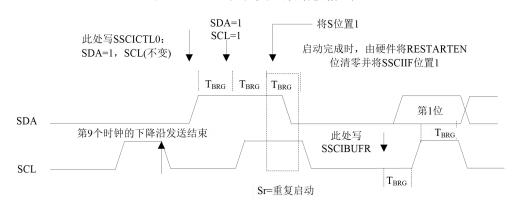
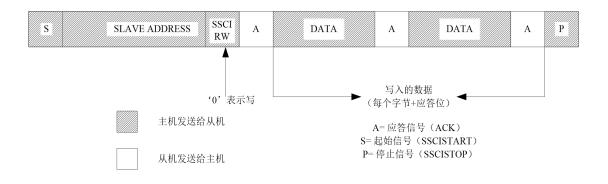



图9.12 重复启动条件时序波形

9.3.3.6 I2C 主控模式发送

I2C 协议中 SDA 引脚上的数据不仅来源于 SSCIBUFR 寄存器,还需要按 I2C 协议的规定发送起始位、停止位、应答位等信号。图 9.13 所示是 I2C 协议典型写数据帧格式。

芯旺微电子 - 109/160 - Chip**○N**

图 9.13 I2C 协议典型写数据帧格式

发送一个数据字节、一7位地址或一10位地址的另一半,都可以直接通过写一个值到 SSCIBUFR 寄存器来实现。该操作将使缓冲器满标志位 SSCIBUF 置 1,并且波特率发生器 开始计数,同时启动下一次发送。

在 SCL 的下降沿有效后,地址/数据的每一位将被移出至 SDA 引脚。在一个波特率发生器计满返回计数周期(TBRG)内,SCL 保持低电平。数据应该在 SCL 释放为高电平前保持有效。当 SCL 引脚被释放为高电平时,它将在整个 TBRG 中保持高电平状态。在此期间以及下一个 SCL 下降沿之后的一段时间内,SDA 引脚上的数据必须保持稳定。在第 8 位被移出(第 8 个时钟周期的下降沿)之后,SSCIBUF 标志位清零,同时主器件释放 SDA。此时如果发生地址匹配或是数据被正确接收,被寻址的从器件将在第 9 位的时间以一个ACK 位响应。ACK 的状态在第 9 个时钟周期的下降沿写入 SSCIACKDAT 位。主器件接收到应答之后,应答状态位 SSCIACKSTA 会被清零;如果未收到应答,则该位被置 1。第 9个时钟之后,SSCIIF 位会置 1,主控时钟(波特率发生器)暂停,直到下一个数据字节装入SSCIBUFR 为止,SCL 引脚保持低电平,SDA 保持不变。

在写 SSCIBUFR 之后,地址的每一位在 SCL 的下降沿被移出,直至地址的所有 7 位和 SSCIRW 位都被移出为止。在第 8 个时钟的下降沿,主器件将 SDA 引脚拉为高电平以允许 从器件发出应答响应。在第 9 个时钟的下降沿,主器件通过采样 SDA 引脚来判断地址是否被从器件识别。ACK 位的状态被装入 SSCIACKSTA 状态位(SSCICTL1 寄存器)。在发送 地址的第 9 个时钟下降沿之后,SSCIIF 置 1,SSCIBUF 标志位清零,波特率发生器关闭直到下一次写 SSCIBUFR,且 SCL 引脚保持低电平,允许 SDA 引脚悬空。

SSCIBUF 状态标志

在发送模式下,SSCIBUF 位(SSCISTA 寄存器)在 CPU 写 SSCIBUFR 时置 1,在所有 8 位数据移出后清零。

SSCIWCFL 状态标志位

如果用户在发送过程中(即,SSCISR 仍在移出数据字节时)写 SSCIBUFR,则 SSCIWCFL 置 1 且缓冲器的内容保持不变(未发生写操作)SSCIWCFL 必须由软件清零。

SSCIACKSTA 状态标志

在发送模式下,当从器件发送应答响应(ACK=0)时,SSCIACKSTA 位(SSCICTL1 寄存器)清零;当从器件没有应答(ACK=1)时,该位置1。从器件在识别出其地址(包括广播呼叫地址)或正确接收数据后,会发送一个应答。

注:若主机发送完一个字节后收到的应答标志位 SSCIACKSTA=1,则应及时停止传输(通过发送停止信号 STOPEN 位来实现)。

图 9.14 所示为 I2C 协议的典型写数据帧格式在单片机硬件 I2C 上的实现过程时序图。

KF8TS2508/2510/2514 数据手册 V1.8

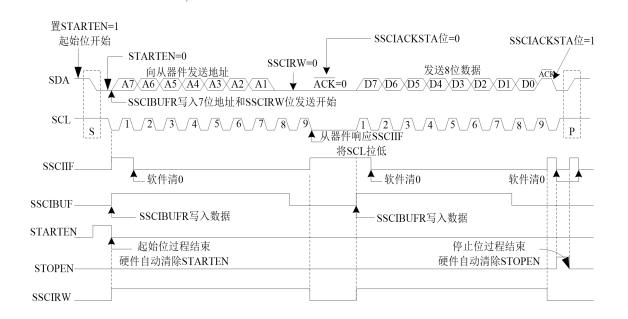


图 9.14 硬件 I2C 主模式发送数据时序图 (7位地址)

9.3.3.7 I2C 主控模式接收

I2C主模式数据接受的系统结构与主模式数据发送系统结构相同,但是数据接收流程与数据发送流程不同。如图9.15为I2C协议典型读数据帧格式。

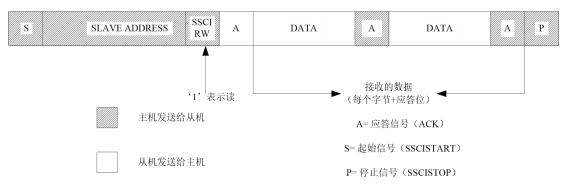


图9.15 I2C协议典型读数据帧格式 通过编程接收使能位SSCIRCEN(SSCICTL1寄存器)使能主控模式接收。

注: SSCIRCEN位被置1前, SSCI模块必须处于空闲状态, 否则SSCIRCEN 位将被忽略。

波特率发生器开始计数,每次计满返回时,SCL引脚的状态都发生改变(由高变低或由低变高),且数据被移入SSCISR。第8个时钟的下降沿之后,接收使能标志位自动清零,SSCISR的内容装入SSCIBUFR,SSCIBUF标志位置1,SSCIIF标志位置1,波特率发生器暂停计数,SCL保持为低电平。此时SSCI处于空闲状态,等待下一条命令。当CPU读缓冲器时,SSCIBUF标志位将自动清零。通过将应答序列使能位SSCIACKEN(SSCICTL1寄存器)置1,用户可以在接收结束后发送应答位。

芯旺微电子 - 111/160 - Chip**○N**

SSCIBUF 状态标志

接收时,当将地址或数据字节从SSCISR装入SSCIBUFR时, SSCIBUF位置1; 在读SSCIBUFR寄存器时SSCIBUF位清零

注:当读操作完成时若SSCIBUF还是1(说明SSCIBUFR上次读到的数据未被读走),会使SSCIIF接收溢出信号SSCIOV自动置位。SSCIOV必须软件清零。

SSCIOV 状态标志

接收时,当SSCISR 接收到8位数据时, SSCIOV位置1, SSCIBUF标志位已经在上一次接收时置1。

SSCIWCFL 状态标志

如果用户在接收过程中(即,SSCISR仍在移入数据字节时)写SSCIBUFR,则SSCIWCFL位置1,缓冲器内容不变(未发生写操作)

图9.16 为典型读数据帧格式在单片机硬件I2C上的实现接收过程时序图。

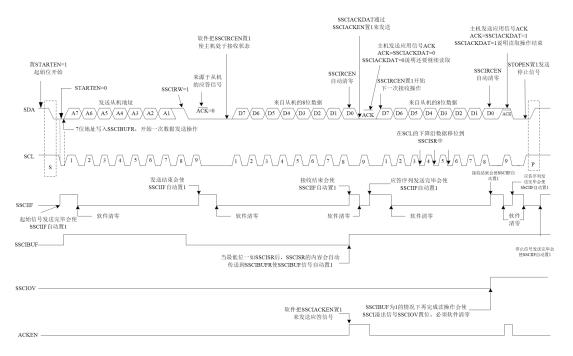


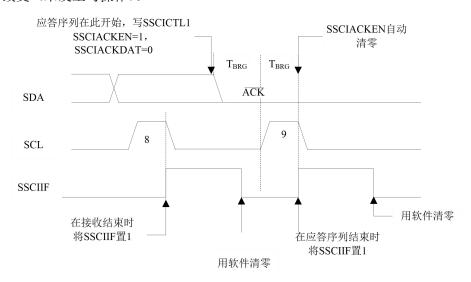
图9.16 I2C主模式接收数据时序图(7位地址)

9.3.3.8 应答序列时序

将应答序列使能位SSCIACKEN(SSCICTL1寄存器)置1即可使能应答序列。当该位被置1 时, SCL引脚被拉低,应答数据位的内容出现在SDA引脚上。如果用户希望产生一个应答,则应该将SSCIACKDAT位清零;否则,用户应该在应答序列开始前将SSCIACKDAT位置1。然后波特率发生器进行一个计满返回周期(TBRG)的计数,随后SCL引脚电平被拉高。当SCL引脚采样为高电平时(时钟仲裁),波特率发生器再进行一个TBRG周期的计数。然后SCL引脚被拉低。在这之后,SSCIACKEN位自动清零,波特率发生器关闭,SSCI 模块进入空闲模式。

SSCIWCFL 状态标志位

如果用户在应答序列正在进行时写SSCIBUFR, SSCIWCFL 将被置1 且缓冲器的内容保持不变(未发生写操作)。



9.3.3.9 停止条件序列

在接收/发送结束时,通过置停止序列的使能位,STOPEN(SSCICTL1寄存器),SDA引脚将产生一个停止位。在接收/发送结束时,SCL引脚在第9个时钟的下降沿后保持低电平。当STOPEN位置1时,主控器件将SDA置为低电平。当SDA线采样为低电平时,波特率发生器被重新装入值并递减计数至0。波特率发生器发生超时时,SCL引脚被拉到高电平,且一个TBRG(波特率发生器计满回零)后,SDA引脚被重新拉到高电平。当SDA引脚采样为高电平且SCL也是高电平时,SSCISTOP位(SSCISTA寄存器)置1。一个TBRG周期后,STOPEN位清零且SSCIIF位置1。

SSCIWCFL 状态标志

如果用户在停止序列进行过程中试图写SSCIBUFR,则SSCIWCFL 位将置1,缓冲器的内容不会改变(未发生写操作)。

注: TBRG=一个波特率发生器周期

在时钟脉冲上升沿前拉 低SDA以建立停止条件

写SSCICTL1, STOPEN置1 第9个周期下降沿 T_{BRG} T_{BR} T_B

图9.17 应答序列时序波形

图9.18 停止条件接收或发送模式

T_{BRG}后, SCL被拉高

9.3.3.10 时钟仲裁

如果在任何接收、发送或重复启动/停止条件期间,主器件拉高了 SCL 引脚(允许 SCL 引脚悬空为高电平),就会发生时钟仲裁。如果允许 SCL 引脚悬空为高电平,波特率发生器 (BRG)将暂停计数,直到实际采样到 SCL 引脚为高电平为止。当 SCL 引脚采样为高电平时,波特率发生器中将被重新装入 SSCIADD<6:0> 的内容并开始计数。这可以保证当外部器件将时钟拉低时,SCL 始终保持至少一个 BRG 计满返回周期的高电平。

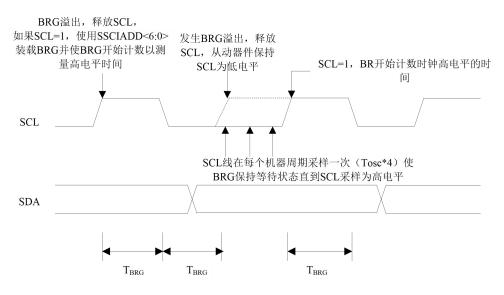


图 9.19 主控发送模式下的时钟仲裁时序

9.3.4 多主控器模式

在多主控制器模式下,在检测到启动条件和停止条件时产生的中断可用于判断总线是否空闲。停止(SSCISTOP)位和启动(SSCISTART)位在复位时或禁止SSCI模块时被清零。停止(SSCISTOP)位和启动(SSCISTART)位会根据启动和停止条件翻转。当SSCISTOP位(SSCISTA<4>)置1时,可以获得I2C总线的控制权;否则,SSCISTOP位和SSCISTART位都清零,总线处于空闲状态。当总线处于忙状态且允许SSCI中断时,一旦发生停止条件便产生中断。

在多主控制器操作中,必须监视SDA线以确定信号电平是否为所需的输出电平。此检查 仅需在输出为高电平时进行。如果期望输出高电平,但检测到的是低电平,器件就需要释放 SDA和SCL线(TR1<1:0> 位置1)。此仲裁在以下状态可能会失败:

- 地址传输
- 数据传输
- 启动条件
- 重复启动条件
- 应答条件

当使能从动逻辑电路时,从控制器将继续接收数据。如果在地址传输阶段仲裁失败,可能表示与器件的通信正在进行中。如果寻址到器件,则将会产生一个ACK脉冲。如果在数据传输阶段仲裁失败,则器件需要在以后重新传输数据。

9.3.4.1 多主机通信,总线冲突与总线仲裁

多主机模式是通过总线仲裁来支持的。

当主器件将地址/数据位输出到 SDA 引脚时,如果一个主器件通过将 SDA 引脚悬空为高电平以在 SDA 上输出 1,而另一个主器件输出 0,就会发生总线仲裁。

如果 SDA 引脚上期望的数据是 1,而实际在 SDA 引脚上采样到的数据是 0,则发生了总线冲突。主器件将把总线冲突中断标志位 BCLIF 置 1,并将 I2C 端口复位到空闲状态。如果在发送过程中发生总线冲突,则发送停止,SSCIBUF 标志位清零, SDA 和 SCL 线被拉高,并且允许对 SSCIBUFR 进行写操作。当执行完总线冲突中断服务程序后,如果 I2C 总线空闲,用户可通过发出启动条件恢复通信。

如果在启动、重复启动、停止或应答条件的进行过程中发生总线冲突,则该条件被中止,SDA 和 SCL 线被拉高, SSCICTL1 寄存器中的对应控制位清零。当执行完总线冲突中断服务程序后,如果 I2C 总线空闲,用户可通过发出启动条件恢复通信。主器件将继续监视 SDA 和 SCL 引脚。如果出现停止条件, SSCIIF 位将被置 1。无论发生总线冲突时发送的进度如何,写 SSCIBUFR 都会从第一个数据位开始发送数据。在多主机模式下,通过在检测到启动和停止条件时产生中断可以确定总线何时空闲。SSCISTOP 位置 1 时,可以获取 I2C 总线的控制权,否则总线空闲且 SSCISTART 和 SSCISTOP 位清零。

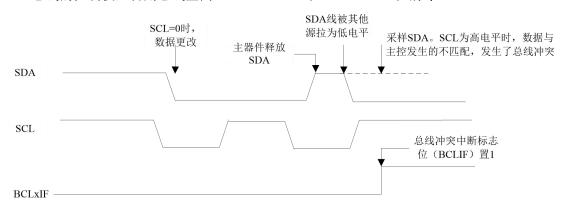


图 9.20 发送和应答时的总线冲突时序

9.3.4.2 启动条件期间的总线冲突

启动条件期间,以下事件将导致总线冲突:

- 1) 在启动条件开始时, SDA 或 SCL 被采样为低电平。
- 2) SDA 被拉低之前, SCL 采样为低电平。

在启动条件期间, SDA 和 SCL 引脚都会被监视。如果 SDA 引脚已经是低电平,或 SCL 引脚已经是低电平,则:

- 中止启动条件,
- BCLIF 标志位置 1,
- 并将 SSCI 模块复位为空闲状态。

启动条件从 SDA 和 SCL 引脚被拉高开始。当 SDA 引脚采样为高电平时,波特率发生器装入 SSCIADD<6:0>的值并递减计数到 0。如果在 SDA 为高电平时,SCL 引脚采样为低电平,则发生总线冲突,因为这表示另一个主器件在启动条件期间试图发送一个数据 1。

KF8TS2508/2510/2514 数据手册 V1.8

如果 SDA 引脚在该计数周期内采样为低电平,则 BRG 复位,同时 SDA 线保持原值。但是,如果 SDA 引脚采样为 1。如果 SDA 引脚将在 BRG 计数结束时被置为低电平。随后波特率发生器被重新装入值并递减计数至 0。在此期间,如果 SCL 引脚采样到 0,则没有发生总线冲突。在 BRG 计数结束时, SCL 引脚被拉为低电平。

注:

在启动条件期间不会发生总线冲突是因为两个总线主器件不可能精确地在同一时刻发出启动条件。因此总是有一个主器件先于另一个主器件将SDA拉低。但是这一情况不会引起总线冲突,因为允许两个主器件对启动条件后的第一个地址进行仲裁。如果地址是相同的,将继续对数据部分、重复启动条件或停止条件进行仲裁。

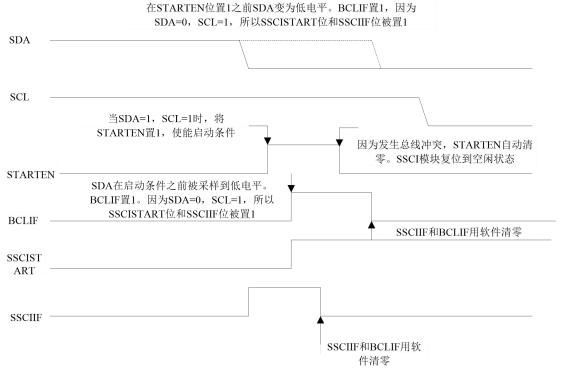


图9.21 启动条件期间的总线冲突(仅SDA)

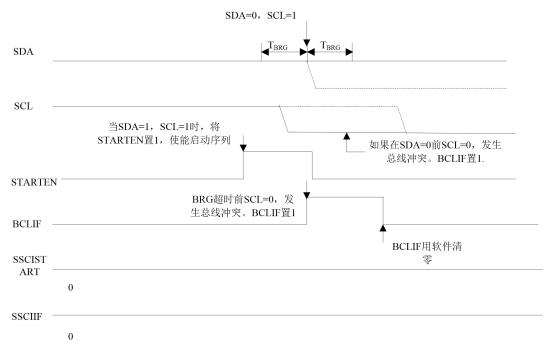


图9.22 启动条件期间的总线冲突(SCL=0)

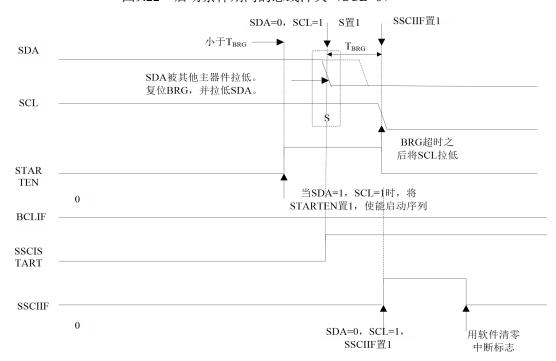


图9.23 启动条件期间由SDA仲裁引起的BRG复位

9.3.4.3 重复启动条件期间的总线冲突

在下列情况中,重复启动条件期间会发生总线冲突:

- 1) 在SCL 由低电平变为高电平的过程中, SDA 采样到低电平。
- 2) 在SDA 被拉为低电平之前, SCL 变为低电平,表示另一个主器件正试图发送一个数据1。

芯旺微电子 - 117/160 - Chip**○N**

当用户拉高SDA 并允许该引脚悬空时, BRG 中装入SSCIADD<6:0> 中的值并递减计数至0。接着SCL 引脚被置为高电平,当SCL 采样到高电平时,对SDA 引脚进行采样。

如果 SDA 为低电平,则已发生了总线冲突(即,另一个主器件正试图发送一个数据 0)。如果 SDA 采样为高电平,则 BRG 被重新装入值并开始计数。如果 SDA 在 BRG 超时之前从高电平变为低电平,则没有发生总线冲突,因为两个主器件不可能精确地在同一时刻将 SDA 拉低。

如果 SCL 在 BRG 超时之前从高电平变为低电平,且 SDA 尚未变为低电平,表示发生了总线冲突。在此情况下,在重复启动条件期间另一个主器件正试图发送一个数据 1。

如果在 BRG 超时结束时 SCL 和 SDA 都仍然是高电平,则 SDA 引脚被拉低,BRG 重新装入值并开始计数。在计数结束时,无论 SCL 引脚的状态如何, SCL 引脚都被拉低,重复启动条件结束。

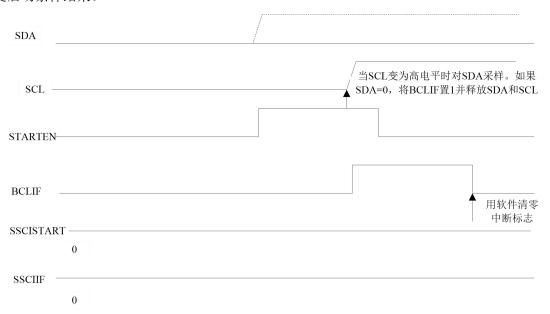


图 9.24 重复启动条件期间的总线冲突(情形 1)

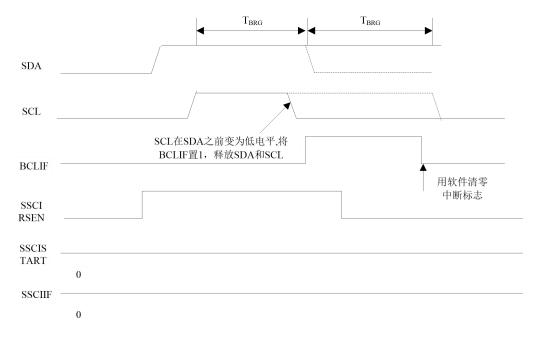


图 9.25 重复启动条件期间的总线冲突(情形 2)

SSCIS TOP

SSCIIF

0

0

9.3.4.4 停止条件期间的总线冲突

以下事件会导致停止条件期间的总线冲突:

- 1) SDA已被拉高并允许悬空为高电平之后,SDA在BRG 超时后被采样到低电平。
- 2) SCL 引脚被拉高之后, SCL 在SDA 变成高电平之前被采样到低电平。

停止条件从SDA被拉低开始。当SDA采样为低电平时,SCL 引脚就可以悬空为高电平。 当引脚被采样到高电平时(时钟仲裁),波特率发生器中装入SSCIADD<6:0>的内容并递减 计数到0。BRG 超时后,采样SDA。如果SDA 采样到低电平,则已发生总线冲突。这是因 为另一个主器件正试图发送一个数据0。如果SCL 引脚在允许SDA 悬空为高电平前被采样 到低电平,也会发生总线冲突。这是另一个主器件正试图发送一个数据0 的又一种情况。

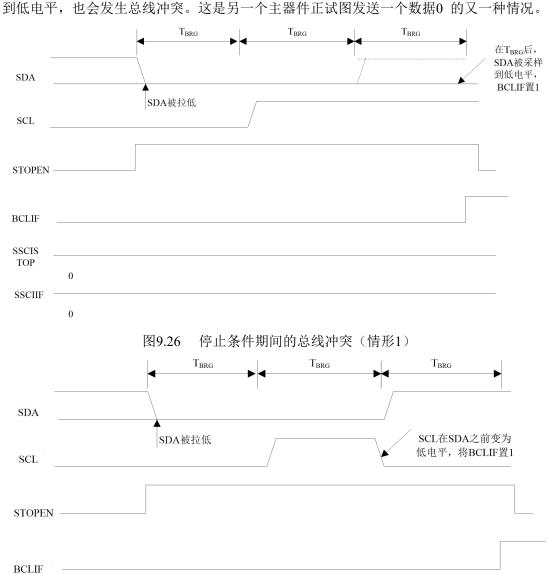


图9.27 停止条件期间的总线冲突(情形2)

9.3.4.5 SSCI 屏蔽寄存器

在I2C 从动模式下, SSCI 屏蔽(SSCIMSK)寄存器用于在地址比较操作下屏蔽SSCISR寄存器中的值。SSCIMSK 寄存器中某位为0 会使SSCISR寄存器中相应的位成为"无关位"。

此寄存器在任何复位条件发生时均复位为全1,因此,在写入屏蔽值前,它对标准SSCI操作没有影响。

必须在通过设置SSCIMOD<3:0> 位以选择I2C 从动模式(7位或10 位地址)之前对此寄存器进行初始化。只有通过SSCICTL0 的SSCIMOD<3:0> 位选择了适当的模式后才可访问此寄存器。SSCI 屏蔽寄存器在以下情况下有效:

- 7 位地址模式:与SSCIADD <7:1> 进行地址比较。
- 10 位地址模式: 仅与SSCIADD <7:0> 进行地址比较。SSCI 屏蔽在接收到地址的 第一个(高)字节期间无效。

10 电容触摸模块

KF8TS2508/2510/2514内建触摸按键功能模块,最大能连接8/10/14个按键,可通过寄存器CTCTL寄存器的CTCHSEL<4:0> 来选择,每次仅能选择一个通道。如果不用做触摸按键功能,可通过寄存器设置作为I/O 端口。

KF8TS2508/2510/2514内建触摸按键功能模块工作电路精简,应用时仅需在CAP引脚外接一个Cx 电容。Cx 电容值选择1nF~10nF之间,要求使用10%或以上精度的涤纶电容、X7R 材质电容或NPO 材质贴片电容。Cx 电容可根据实际电路板材质以及触摸按键介质调节合适的灵敏度,电容值越小,灵敏度越低,电容值越大,灵敏度越高。

电容传感电路有四种工作频率,可通过寄存器CTCLKSEL1 位和CTCLKSEL0 位选择,建议工作频率选择系统时钟源/8或系统时钟源/16。触摸按键模块内建基准电压,可通过 VSEL位选择。

10.1 电容触摸的原理

电容触摸模块是通过采样传感电压值到达电容触摸基准电压值的时间,来判断是否有电容按键被触摸。

当 CTSTART 置 1 时,触摸模块开始检测通道,同时 T3 计数器开始计数,一旦传感电压到达电容触摸基准,触摸中断位置位,CTSTART 自动清零,T3 计数器停止计数。读取 T3 计数器的计数值。由于当有电容按键被触摸时,触摸传感电压更快到达基准电压,所以用户可通过比较读取 T3 计数值的大小来判断有无按键触摸(用户需自己调试),框图如下图 10.1 所示:

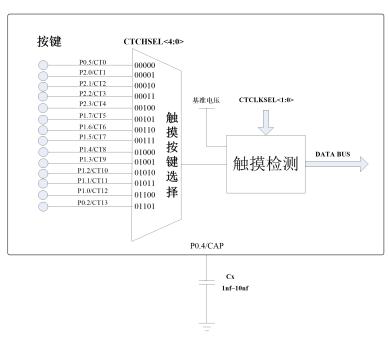


图 10.1 电容触摸原理

⊕注释:外接电容端口需设置成模拟口

注: KF8TS2508 带有 8 个电容触摸通道; KF8TS2510 带 10 个电容触摸通道; KF8TS2514 带有 14 个电容触摸通道, 具体请参考引脚示意图。

10.2 电容触摸相关寄存器

表 10-1 电容触摸相关寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
53H	CTCTL0	CTEN	CTSTART	T3CLR	C	TCHSEL<4:0	>电容触摸按	键输入选择位		
1AH	VDACS	-	VCEN	-	-	-	-	-	-	
112H	VDAC	VDAC3	VDA2	VDAC1	VDAC0	-	-	-	-	
113H	VRES	VRES3	VRES2	VRES1	VRES0	-	-	-	-	
64H	CTCTL1	CTCLKSE L1	CTCLKS EL0	-	-	-	-	-	VSEL	
15BH	CTCTL2	-	-	-	CTMODE	RSEL3	RSEL2	RSEL1	RSEL0	
4EH	T3CTL	T3EN	T3CKS1	T3CKS0	T3CS	PWMS	-	-	-	
164H	T4CTL	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON	
4FH	T3L				T3 低位	寄存器				
5FH	Т3Н				T3 高位	寄存器				
161H	T4H				T4 高	8 位				
160H	T4L		T4 低 8 位							
163H	T4REH		T4 重载寄存器高 8 位							
162H	T4REL				T4 重载寄存	字器低 8 位				

10.2.1 电容触摸控制寄存器 0 (CTCTL0)

寄存器10.1: CTCTL0: 电容触摸控制寄存器(地址: 53H)

<i>与比</i> 体	bit7							bit0
复位值	CTEN	CTSTART	T3CLR	CTCHSEL	CTCHSEL	CTCHSEL	CTCHSEL	CTCHSEL
0000 0000	CIEN	CISTARI	ISCLK	4	3	2	1	0
·	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CTEN: 电容触摸使能位

1 = 电容触摸使能 0 = 电容触摸禁止

CTSTART: 电容触摸通道检测启动位

1 = 启动电容触摸计数器 T3(16 位)计数。电容触摸专用比较器输出为低电平

时,该位自动清零,计数器停止计数。

T3CLR: T3 计数寄存器清零位

0=T3 计数寄存器在复位状态

1=T3 计数寄存器退出复位状态

CTCHSEL<4:0>:14 个电容触摸按键输入选择位

00000 = P0.5 作为电容触摸输入

00001 = P2.0 作为电容触摸输入

00010 = P2.1 作为电容触摸输入

00011 = P2.2 作为电容触摸输入

00100 = P2.3 作为电容触摸输入

00101 = P1.7 作为电容触摸输入

00110 = P1.6 作为电容触摸输入

00111 = P1.5 作为电容触摸输入

01000 = P1.4 作为电容触摸输入

01001 = P1.3 作为电容触摸输入

01010 = P1.2 作为电容触摸输入

01011 = P1.1 作为电容触摸输入

01100 = P1.0 作为电容触摸输入

01101 = P0.2 作为电容触摸输入

其他 = 系统保留

图注: R=可读 W=可写 -=未用 U=未实现位

注:一旦检测到有触摸按键按下后,CTSTART 位将自动清零,用户在进行下一个触摸按键扫描时,需重新设置 CTSTART 位。

10.2.2 电容触摸控制寄存器 1 (CTCTL1)

如寄存器 10.2 所示, CTCLKSEL<1:0>为电容触摸时钟预分频比选择位,可以选择 4 种分频比,分别是系统时钟源/4、系统时钟源/8、系统时钟源/16 和系统时钟源/32。VSEL 为电容触摸基准电压选择位,可选择 2 种,分别为 V_{DD} 和内部参考电压 V_{REF}。

寄存器10.2: CTCTL1: 控制寄存器(地址: 64H)

有位估	bit7							bit0
复型组	CTCLKSE	CTCLKSE						VSEL
0000 0000	L1	L0	-	-	-	-	-	VSEL
	D/W/	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CTCLKSEL<1:0>: 电容触摸时钟预分频比选择位

00 = 系统时钟源/4

01 = 系统时钟源/8

10 = 系统时钟源/16

11 = 系统时钟源/32

VSEL: 输入电容充电电压源选择位

0= 输入电容充电电压源为 VREF

1 = 输入电容充电电压源为 VDD

图注: R=可读 W=可写 -=未用 U=未实现位

10.2.3 电容触摸控制寄存器 2 (CTCTL2)

寄存器10.2: CTCTL2: 控制寄存器(地址: 15BH)

<i>与</i> (上) (古)	bit7							bit0
复位值 0000 0000	ı	-	1	CTMODE	RSEL3	RSEL2	RSEL1	RSEL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CTMODE: 电容触摸模式选择位

0 = 单周期模式

1= 周期扫描模式

RSEL<3:0>: 电容触摸放电电阻选择位

RSEL3=10K Ω RESL2=10K Ω RESL1=5K Ω RESL0=2.5K Ω

注: RSEL<3:0>位只在周期扫描模式下有效,单周期模式下请保持全 0; RSEL<3:0>位为 1 时有效,选择的放电电阻=RSEL3+RESL2+RESL1+RELS0;例如 RSEL=0101,放电电阻= $10K\Omega+2.5K\Omega=12.5K\Omega$;RSEL=1111,放电电阻= $27.5K\Omega$ 。

图注: R=可读 W=可写 -=未用 U=未实现位

10.2.4 电阻分压比设置寄存器(VDAC)

寄存器10.3: VDAC: 电阻分压比设置寄存器(地址: 112H)

	bit7							bit0	_
复位值 0000 0000	VDAC3	VDAC2	VDAC1	VDAC0	保留	保留	保留	保留	
·	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•

VDAC<3:0>:电阻分压比设置位

0000 = 0.05 VDAC

0001 = 0.15 VDAC

0010 = 0.15 VDAC

0011 = 0.2 VDAC

0100 = 0.25 VDAC

0101 = 0.3 VDAC

0110 = 0.35 VDAC

0111 = 0.4 VDAC

1000 = 0.45 VDAC

1001 = 0.5 VDAC

1010 = 0.55 VDAC

1011 = 0.6VDAC

1100 = 0.65 VDAC

1101 = 0.7VDAC

1110 = 0.75 VDAC

1111 = 0.8 VDAC

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

10.2.5 电阻分压比设置寄存器(VRES)

寄存器10.3: VRES: 电阻分压比设置寄存器1(地址: 113H)

	bit7							<u>bit0</u>
复位值 0000 0000	VRES3	VRES2	VRES1	VRES0	保留	保留	保留	保留
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

VRES<3:0>:电阻分压比设置位

0110 = 0.35 VDAC

0111 = 0.5 VDAC

1000 = 0.65 VDAC

其他:保留

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写 0,不能写 1。

10.2.6 电阻分压源选择寄存器(VDACS)

寄存器10.4: VDACS: 电阻分压源选择寄存器(地址: 1AH)

与 12 14	bit7							bit0	
复位值 00000	保留	VCEN	-	-	-	-	-	-	
·	R/W	R/W	U	U	U	R	R	R	_

VCEN: 电阻分压源选择位

0=VDD作为电阻分压电路VDAC的电压源 1=VREF作为电阻分压电路VDAC的电压源

图注: R=可读 W=可写 -=未用 U=未实现位

注:保留位只能写0,不能写1。

10.3 触摸中断

电容触摸模块与定时器 T3 共用中断使能位 T3IE、中断标志位 T3IF 和中断优先级位 PT3。当传感电压值达到阈值电压值时,触摸专用比较器开始翻转,此时触摸采样完成,T3IF 会被置 1,如果 AIE 位(INTCTL.7)、PUIE 位(INTCTL.6)和 T3IE 位(EIE2.7)都为 1,则进入相应的触摸中断子程序。

当 IPEN=1 时,用户还可通过 IP2 寄存器的 PT3 位设置触摸中断的优先级。

10.4 触摸的使用

10.4.1单周期模式

触摸按键在使用时通过以下步骤进行设置:

- 1. 将CTCTL2寄存器的CTMODE位清零(该位复位值为0)选择到单周期模式;
- 2. 通过CTCTL1的CTCLKSEL<1:0>位选择工作时钟频率;

KF8TS2508/2510/2514 数据手册 V1.8

- 3. 通过CTCTL1的VSEL位选择基准电压源;
- 4. 通过VDAC寄存器的VDAC<3:0>设置基准电压;
- 5. 通过CTCTL0的CTCHSEL<4:0>选择需要的通道;
- 6. 给寄存器CTCTL0的CTEN置1,使能电容触摸;
- 7. 延时一定时间,给寄存器CTCTL0的CTSTART置1启动计数器(T3);
- 8. 延迟等待检查CTSTART位为0时,读出计数器的值即可。

10.4.2周期扫描模式

触摸模块在周期扫描模式下的使用步骤如下:

- 1. 将CTCTL2寄存器的CTMODE位置1选择到周期扫描模式;
- 2. 通过CTCTL1寄存器的CTCLKSEL<1:0>位选择工作时钟频率;
- 3. 通过CTCTL1寄存器的VSEL位选择基准电压源;
- 4. 通过VDAC寄存器的VDAC<3:0>位和VRES寄存器的VRES<3:0>位设置基准电压;
- 5. 通过CTCTL0的CTCHSEL<4:0>选择需要的通道;
- 6. 通过CTCTL2寄存器的RSEL<3:0>位选择放电电阻;
- 7. 通过T4REH和T4REL寄存器配置T4的重载点;
- 8. 分别通过T3CTL和T4CTL寄存器对T3和T4进行配置,T3和T4用作触摸时,请勿将T3EN和T4EN位置1:
- 9. 通过将寄存器CTCTL0的CTEN置1,使能电容触摸;
- 10.延时一定时间,给寄存器CTCTL0的CTSTART置1;
- 11.延时等待检查CTSTART位为0时,计算 $_{T4H/L+T4REH/L-T3H/L}$ 的值。

11 复位

KF8TS2508/2510/2514 具有:上电复位(POR)、WDT 复位、RST 复位和欠压检测复位(LVR) 四种复位方式。

有些寄存器的状态在上电复位时它们的状态不定,而在其它复位发生时其状态将保持不变;其它大多数寄存器在复位事件发生时将被复位成"复位状态"。图 12.1 给出了片内复位电路的简化结构方框图。

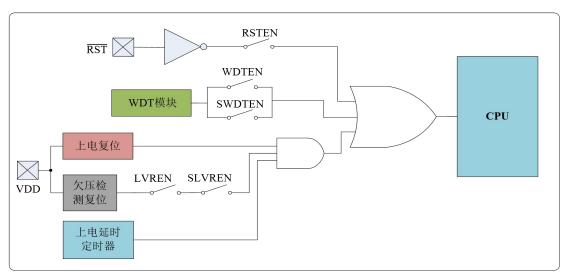


图 11.1 片内复位电路简化框图

注:上电延时定时器只对上电复位(POR)和欠压复位(LVR)有效。

11.1 电源控制状态寄存器(PCTL)

如寄存器 11.1 所示, LVR 位的状态在单片机上电复位时是不确定的。如果用户在使用中要用到该位,在程序初始化部分需将其置 1,随后如果有复位发生且 LVR=0,则表示发生过欠压检测复位。 LVR 状态位是"无关"位,如果欠压检测电路被关闭(通过设定配置字中的 LVREN 位和 PCTL 中的 SLVREN 位), LVR 状态位是不可预知的。 POR 是上电复位状态位,该位在上电复位时被清零,在其它情况下不受影响。

寄存器11.1: PCTL: 电源控制寄存器(地址:2EH)

	bit7							bit0
复位值 1 000x	-	-	-	SLVREN	IPEN	SWDTEN	POR	LVR
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SLVREN: 软件欠压检测使能位

1 = 使能欠压检测

0 = 禁止欠压检测

IPEN: 中断优先级控制位

1= 使能中断优先级功能, 即为优先级模式

0 = 禁止中断优先级,即为普通模式

SWDTEN: 软件看门狗定时器使能位

当配置字的 WDTEN=0 时 1 = 软件使能看门狗定时器 0 = 软件禁止看门狗定时器

当配置字的 WDTEN=1 时,为无关位

POR: 上电复位状态位

1 = 未发生上电复位

0 = 发生了上电复位

LVR: 欠压复位状态位

1 = 未发生欠压复位0 = 已发生欠压复位

图注: R=可读 W=可写 -=未用 U=未实现位

11.2 上电复位(POR)

在 VDD 达到适合单片机正常工作的电平之前,片内上电复位电路使单片机保持在复位状态,直到 VDD 达到正常工作电平之后单片机才开始正常工作。KF8TS2508/2510/2514 的上电复位时间为 30ms 左右(PWRT=0. 上电延时使能)。

11.3 WDT 复位

看门狗定时器有一个独立的时钟源,因此单片机在正常工作和休眠模式下都可以正常工作。在单片机正常工作且打开看门狗后,当看门狗计数器计满后产生溢出,将使单片机复位。

在休眠模式下,WDT 也可以正常工作,当 WDT 定时器计满溢出后,将会使单片机从休眠模式唤醒转入正常工作模式,在休眠模式不会对各寄存器复位。

11.4 **RST** 复位

使能外部 RST 复位(配置位 RSTEN=1)后,当引脚 $P0.3/\overline{RST}$ 输入复位信号,不管单片机工作在正常模式还是休眠模式,均会使单片机复位。通过在编程时将 P0.3 引脚配置为 \overline{RST} 复位引脚,即可打开 \overline{RST} 复位。

在 \overline{RST} 复位时, KF8TS2508/2510/2514 器件有一个噪声滤波器用于滤除 \overline{RST} 引脚上的噪声干扰,图 11.2 是建议 \overline{RST} 复位电路。

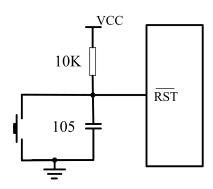


图 11.2 建议 RST 复位电路

11.5 欠压检测复位(LVR)

KF8TS2508/2510/2514 系列中的单片机具有片内欠压检测复位电路。通过编程时设定配置位中的 LVREN 位可以禁止/使能(清零/置 1)欠压检测复位电路,当配置位中的 LVREN 位被使能后,用户还要在软件中设置 PCTL 中的 SLVREN 位来禁止/使能(清零/置 1)欠压检测复位电路。

如果 VDD 跌落至 VLVR 以下且持续时间大于 TLVR (TLVR 大于 10us),欠压检测电路将使单片机复位,单片机保持复位状态直到 VDD 上升到 VLVR 以上,如果上电延时使能(配置位 PWRT=0),此时上电延时定时器启动,使器件在随后 30ms 左右的延时时间处于延时复位 状态,过了 30ms 左右以后单片机开始正常工作。

如果 VDD 跌落至 VLVR 以下的时间小于规定参数(TLVR),将不保证可产生复位。

如果在上电延时定时器运行过程中发生 VDD 跌落至 VLVR 以下的情况,器件将返回欠压检测复位状态且上电延时定时器被重新初始化。直到 VDD 上升至 VLVR 以上时,上电延时定时器启动一个 30ms 左右的复位延时,如在延时期间没有欠压发生,单片机会退出复位状态开始正常工作。

11.6 上电延时定时器

上电延时定时器仅在器件上电复位或欠压检测复位发生后提供一个长度约为30ms的固定延时时间(配置位 PWRT =0)。上电延时定时器的定时时钟为系统内部低频振荡器。只要单片机产生上电复位或欠压检测复位,单片机就会在上电复位或欠压检测复位发生后保持复位状态约30ms。上电延时定时器使单片机在VDD上升到适当电平后才开始正常运行。

由于 VDD、温度、制造工艺、内部震荡器频率等的变化,不同单片机的上电延时时间有所差异。

11.7 不同复位条件下对寄存器的影响

表 11-1 寄存器在各种复位发生后的状态

寄存器	地址	上电复位	RST 复位 欠压检测	│ 中断唤醒 │ WDT 超时唤酮
T0	01H	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02H	0000 0000	0000 0000	PC+1
PSW	03H	0001 1xxx	000q quuu	uuuq quuu
P0	05H	XX XXXX	uu uuuu	uu uuuu
P2	06H	XXXX	uuuu	uuuu
P1	07H	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCH	0AH	0 0000	0 0000	u uuuu
INTCTL	0BH	0000 0000	0000 0000	uuuu uuuu
EIF1	0CH	0000 0000	0000 0000	uuuu uuuu
EIF2	0DH	0000 0000	0000 0000	uuuu uuuu
T1L	0EH	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1H	0FH	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CTL	10H	0000 0000	uuuu uuuu	uuuu uuuu
PWM1L	13H	XXXX XXXX	uuuu uuuu	uuuu uuuu
PWMCTL	15H	0000 0000	0000 0000	uuuu uuuu
PP1	16H	1111 1111	1111 1111	uuuu uuuu
BANK	17H	0000	0000	uuuu
VDACS	1AH	00000	00000	uuuuu
ANSEH	1DH	0000 0000	0000 0000	uuuu uuuu
ADCDATA0H	1EH	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCCTL0	1FH	0000 0000	0000 0000	uuuu uuuu
OPTR	21H	1111 1111	1111 1111	uuuu uuuu
IP0	22H	000	000	uuu
IP1	23H	0000 0000	0000 0000	uuuu uuuu
IP2	24H	0000 0000	0000 0000	uuuu uuuu
TR0	25H	1111 1111	1111 1111	uuuu uuuu
TR2	26H	1111 1111	1111 1111	uuuu 1111
TR1	27H	1111 1111	1111 1111	uuuu uuuu
OSCSTA	28H	011000	011000	uuuuuu
IP3	29H	000	000	uuu
VRECAL1	2AH	0111 0111	0111 0111	uuuu uuuu
EIE1	2CH	0000 0000	0000 0000	uuuu uuuu
EIE2	2DH	0000 0000	0000 0000	uuuu uuuu
PCTL	2EH	1 000x	1 00uq	u uuuu
OSCCALO	2FH	0010 0000	0010 0000	uuuu uuuu
OSCCAL0	30H	1000 0000	1000 0000	uuuu uuuu
ANSEL PP2	31H	1111 1111	0000 0000	uuuu uuuu
	32H		1111 1111	uuuu uuuu
PWM2L PUR0	33H 35H	1111 111	1111 -111	uuuu uuuu
IOCL	35H 36H	1111 -111 0000 0000	0000 0000	uuuu -uuu
OSCCAL1	37H	0000 0000	0000 0000	uuuu uuuu uuuu -uuu
NVMDATAH	38H	0000 0000	0000 0000	uuuu uuuu
NVMDATAL	39H	0000 0000	0000 0000	uuuu uuuu
NVMADDRH	3AH	0000 0000	0000 0000	uuuu uuuu
NVMADDRL	3BH	0000 0000	0000 0000	uuuu uuuu
NVMCTL0	3CH	x000	q000	uuuu
NVMCTL1	3DH			
ADCDATA0L	3EH	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCCTL1	3FH	0000 0000	0000 0000	uuuu uuuu
POLR	45H	XXXX XXXX	uuuu uuuu	uuuu uuuu
P2LR	46H	XXXX XXXX	uuuu uuuu	uuuu uuuu
P1LR	47H	XXXX XXXX	uuuu uuuu	uuuu uuuu
EIE3	4AH	000	000	uuu
EIF3	4BH	000	000	uuu

KF8TS2508/2510/2514 数据手册 V1.8

	/			
寄存器	地址	上电复位	RST 复位	中断唤醒
可行命	면내	上 电复位 	欠压检测	WDT 超时唤醒
OSCCAL2	4CH	0011 1111	0011 1111	uuuu uuuu
OSCCAL3	4DH	0011 1111	0011 1111	uuuu uuuu
T3CTL	4EH	0000 0000	0000 0000	uuuu uuuu
T3L	4FH	0000 0000	0000 0000	uuuu uuuu
CTCTL0	53H	0000 0000	0000 0000	uuuu uuuu
ТЗН	5FH	0000 0000	0000 0000	uuuu uuuu
PUR1	60H	1111 1111	1111 1111	uuuu uuuu
PUR2	61H	1111 1111	1111 1111	uuuu uuuu
CTCTL1	64H	0000 0000	0000 0000	uuuu uuuu
INTEDGCTL	67H	110	110	uuu
VBIASCTL	6BH	00000	00000	uuuuu
VBIAS1EN	6CH	0000 0000	0000 0000	uuuu uuuu
VBIAS2EN	6DH	0000 0000	0000 0000	uuuu uuuu
VDAC	112H	0000 0000	0000 0000	uuuu uuuu
VRES	113H	0000 0000	0000 0000	uuuu uuuu
SSCICTL0	128H	0000 0000	0000 0000	uuuu uuuu
SSCICTL1	12AH	0000 0000	0000 0000	uuuu uuuu
SSCISTA	12BH	0000 0000	0000 0000	uuuu uuuu
SSCIBUFR	12CH	xxxx xxxx	uuuu uuu	uuuu uuuu
SSCIMSK	12EH	1111 1111	1111 1111	uuuu uuuu
WDTPS	12FH	0100	0100	uuuu
VRECAL2	159H	0000 0000	0000 0000	uuuu uuuu
VRECAL3	15AH	1010 0000	1010 0000	uuuu uuuu
CTCTL2	15BH	0000 0000	0000 0000	uuuu uuuu
T4L	160H	0000 0000	0000 0000	uuuu uuuu
T4H	161H	0000 0000	0000 0000	uuuu uuuu
T4REL	162H	XXXX XXXX	uuuu uuu	uuuu uuuu
T4REH	163H	XXXX XXXX	uuuu uuu	uuuu uuuu
T4CTL	164H	0000 0000	0000 0000	uuuu uuuu
RC32KCAL	165H	0000 0000	0000 0000	uuuu uuuu

注: u =不变, x =未知, - =未实现位, 读为 0; q =视具体条件而定。

表 11-2 不同复位条件下对标志位的影响

	7									
POR	LVR	TO	$\overline{\mathrm{PD}}$	复位方式						
0	u	1	1	上电复位						
1	0	1	1	欠压检测复位						
u	u	0	u	WDT 复位						
u	u	0	0	WDT 唤醒						
u	u	u	u	正常操作中的RST复位						
u	u	1	0	休眠模式中的RST复位						

图注: u=未发生变化

12 休眠模式

当单片机空闲的时候,为使其功耗降到最低,可以将其转入休眠模式。通过执行一条 IDLE 指令即可进入休眠模式。

为使这种方式下的电流消耗降至最低,应使所有 I/O 口状态确定,如果有的端口没有使用,最好设置为输入,接到 VDD 或 VSS 上,如果没用的端口悬空,应设置为输出,以确保 I/O 引脚没有耗散电流产生,其他在休眠时不用的外设都要关闭。

注: 在单片机正常工作时,通常有些引脚用不到,有的用户可能会直接将其悬空。为了减小单片机的功耗,应该将不用的引脚设置为数字输出。如果是P0口的引脚则可打开上拉电阻或者设置为数字输出皆可。

单片机进入休眠模式一段时间后由于工作的需要,要将单片机从休眠模式唤醒,在 KF8TS2508/2510/2514 中可通过以下方式将单片机从休眠模式唤醒:

- 1. RST 引脚上输入的外部复位
- 2. 看门狗定时器唤醒(如果 WDT 已被使能)
- 3. INT0/INT1/INT2 外部中断
- 4. T1 中断(异步计数模式)
- 5. P0 口电平变化中断

 \overline{RST} 引脚输入的复位信号在唤醒单片机的同时也将导致单片机复位。其它唤醒时将单片机从休眠模式唤醒,并不会导致复位。可通过状态寄存器中的 \overline{TO} 和 \overline{PD} 位来确定单片机唤醒的原因。上电时 \overline{PD} 位将被置 1,而当器件从休眠模式唤醒时,该位将被清零。 \overline{TO} 位则在 \overline{WDT} 唤醒发生时被清零。

在使用中断方式唤醒时,必须使能相应的中断使能位,唤醒与 AIE 位的状态无关。如果 AIE 位被清零,单片机被唤醒后将继续执行 IDLE 指令后面的指令。如果 AIE 位被置 1,单片机执行 IDLE 指令后面一条指令后进入中断子程序。如果不希望执行 IDLE 指令后面的那条指令直接进入中断子程序,在 IDLE 指令加一条 NOP 指令即可。

13 看门狗定时器 WDT

为了防止单片机在正常工作时程序跑飞, KF8TS2508/2510/2514 提供一个看门狗定时器, 单片机正常工作时, 当看门狗定时器定时时间达到超时时间后, 会使单片机产生复位。

看门狗定时器使用片内看门狗专用 RC 振荡器,因此它无需外接任何器件,在休眠模式仍能正常运行。在正常运行时,WDT 超时事件将使单片机产生一次复位。如果单片机处于休眠模式,WDT 超时事件将唤醒单片机并使其继续执行 IDLE 后面的指令。

13.1 看门狗相关寄存器

表 15-1 看门狗相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
2EH	PCTL	-	-	-	SLVREN	IPEN	SWDTE	POR	LVR
12FH	WDTPS	-	-	-	-	WDTP3	WDTP2	WDTP1	WDTP0

13.1.1 WDT 预分频选择寄存器

寄存器13.1: WDTPS: WDT预分频选择寄存器(地址:12FH)

	bit7							bit0
复位值 0100	-	-	-	-	WDTPS3	WDTPS2	WDTPS1	WDTPS0
	R/W	U	U	U	R/W	R/W	R/W	R/W

WDTPS<3:0>:看门狗定时器预分频比选择位

0000 = 1: 32

0001 = 1:64

0010 = 1: 128

0011 = 1: 256

0100 = 1: 512 (默认) 16ms

0101 = 1: 1024

0110 = 1: 2048

0111 = 1:4096

1000 = 1: 8192

1001 = 1: 16384

1010 = 1: 32768

1011 = 1: 65536

11xx = 保留

图注: R=可读 W=可写 -=未用 U=未实现位

13.2 看门狗的开启关闭方式

看门狗的开启/关闭方式:

- 通过配置位 WDTEN,打开/关闭看门狗;
- 通过寄存器 PCTL 的 SWDTEN 位,打开/关闭看门狗。

上述两种方式任意一种都可启动看门狗;配置位 WDTEN 一旦使能,看门狗将一直开启,软件配置位 SWDTEN 无效;配置位 WDTEN 未使能时,软件配置位 SWDTEN 允许用户在软件上根据实际需求打开/关闭看门狗。

13.3 看门狗的清狗方式

为了防止在正常工作时看门狗超时复位,要在固定的时间内对看门狗定时器进行清狗操作。执行 CWDT 指令进行清狗操作或者执行 IDLE 指令进入休眠模式后,将清零整个看门狗定时器(包括看门狗预分频器和后分频器)。当看门狗定时器出现超时时,状态字寄存器 PSW 中的 \overline{TO} 位将被清 0。

看门狗定时器使用内部低频振荡器作为工作时钟源,因此它无需外接任何器件,在休眠模式仍能正常运行。WDT 超时事件对单片机的动作:

- 在正常运行时, WDT 超时事件将使单片机产生一次复位;
- 在休眠模式下,WDT 超时事件将唤醒单片机并使其继续执行 IDLE 后面的指令。

13.4 看门狗 WDT 的周期

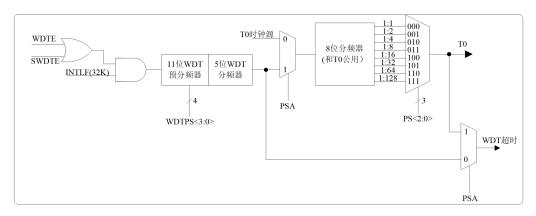


图 13.1 看门狗定时器框图

如看门狗定时器框图所示:看门狗定时器的时钟源为内部低频时钟(带校正功能的32K),相关内容详见内部低频振荡器章节。

看门狗定时器的周期由两个分频器的配置决定,最短约 1ms,最长约 268s,默认配置时为 16ms。由于温度、电源电压和工艺等的差异,不同器件之间的超时周期稍有不同。

看门狗定时器带有两个分频器:

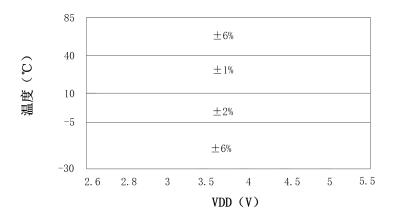
- 一个 16 位(11 位可编程)预分频器;
- 一个 8 位可编程后分频器 (与 T0 共用)。

16 位预分频器中有 11 位可编程,由 WDTPS 寄存器的 WDTPS<3:0>位选择预分频比(1:32 到 1:65536),共 12 档。

后分频器为看门狗定时器和定时/计数器 T0 共用,通过 OPTR 寄存器的 PSA 位将后分频器分配给 WDT 或者 T0;, OPTR 寄存器的 PS<2:0>位选择后分频器的分频比(1/1 到 1/128)。

注:任何对OPTR寄存器的PSA位或者PS<2:0>位操作前和操作后,都须对看门狗定时器进行清狗操作(执行CWDT指令)。否则,可能引起芯片的异常复位。

14 电气规范


14.1 极限参数值

	极限参数值						
序号	参数说明	参数范围					
1	偏置电压下的环境温度	-30°C~85°C					
2	储存温度	-40°C~150°C					
3	VDD 相对于VSS 的电压	-0.3V~+6.0V					
4	MODE 相对于Vss 的电压	-0.3V~ +12.5V					
5	其它引脚相对于VSS 的电压	-0.3V~VDD+0.3V					
6	VSS 引脚的最大输出电流	80mA					
7	VDD 引脚的最大输入电流	80mA					
8	任一I/O 引脚的最大输出灌电流	15mA					
9	任一I/O 引脚的最大输出拉电流	15mA					
10	I/O口 的最大灌电流	80mA					
11	I/O口 的最大拉电流	80mA					

注:如果器件的工作条件超过"最大值",可能会对器件造成永久性损坏。上述值仅为运行条件极大值,建议不要使器件在该规范规定的范围以外运行。器件长时间工作在最大值条件下,其稳定性会受到影响。

14.2 HFINT 的频率精度与器件 VDD 和温度之间的关系

14.3 静态电流特性

表14-1 INTHF静态电流(IDD)特性

测试条件:25°C								
	测试条件	最小值	典型值	最大值	单位			
序号	振荡频率	$V_{DD}(V)$	取/11 阻	秀生山	取八臣	+17.		
	16MHz	5.0	-	889	1530			
1	16MHz	3.0	-	867	1490			
	8MHz	5.0	-	661	1155			
2	OWITIZ	3.0	-	643	1120			
	4MHz	5.0	-	543	985			
3	4MIZ	3.0	-	527	940			
	2MHz	5.0	-	484	910			
4	ΖΙΝΙΠΖ	3.0	-	468	870			
	1MHz	5.0	-	454	875	μA		
5	TWITIZ	3.0	-	439	835			
	500KHz	5.0	-	439	855			
6	SOURIZ	3.0	-	424	815			
	250KHz	5.0	-	432	845			
7	ΖΟΝΠΖ	3.0	-	417	810			
	42.5VII.	5.0	-	427	840			
8	62.5KHz	3.0	-	411	805			

- 注 1: 在正常的工作模式下, IDD 测量的条件为:所有I/O 引脚均设置为输出低, RST = Vss , 禁止WDT, 关闭时钟输出。
 - 2: 供电电流主要随工作电压和频率而变化。其它因素,如I/O 引脚负载和开关速率、内部代码执行模式和温度也会影响电流消耗。

14.4 外设电流特性

表14-2 芯片外设电流特性

	测试条件:25℃									
序号	测试参数	测试条件		最小值	典型值	最大值	单位			
			VDD(V)							
1	休眠电流(I _{PD})	WDT、BOR 等外设被 禁止	5.0V	-	2.0	3				
1	Note of Cibility		3.0V	-	0.9	1.5				
	WDT 电流		5.0V	-	0.8	1.3	μΑ			
2	(I _{WDT})		3.0V	-	0.7	1.2				
	欠电压复位电		5.0V	-	9.7	14				
3	流 (I _{LVR})		3.0V	-	5.0	8				

- 注 1: 外设电流是基本IDD 或IPD 电流以及相应外设使能时消耗的额外电流的总和。外设电流可以从此电流中减去基本IDD 或IPD 电流得出。
 - 2: 休眠电流与振荡器类型无关。掉电电流是在器件休眠时,所有I/O 引脚设置为输出低, RST=Vss; 禁止WDT,关闭时钟输出时测得的。
 - 3: 外设电流还可能受到温度的影响。

14.5 I/O 端口特性

表 14-3 芯片 IO 端口特性

		工作温度 -30	0°C≤T _A ≤+85°	PC		
符号	参数说明	测试条件	最小值	典型值	最大值	单位
VIL	输入低电平 I/O引脚: 采用TTL缓冲器		Vss	-	0.15VDD	V
	采用施密特缓冲触 发器		V_{SS}	-	0.2VDD	V
VIH	输入高电平 I/O端口: 采用TTL缓冲器		VDD-0.6	-	$ m V_{DD}$	V
	采用施密特缓冲触 发器		0.8VDD	-	$ m V_{DD}$	V
Vol	输出低电压		-	-	0.6	V
Vон	输出高电压		VDD -0.6	-	-	V
IIL	输入漏电流	VSS <vi<vdd< th=""><th>-1</th><th>-</th><th>1</th><th>μА</th></vi<vdd<>	-1	-	1	μА

14.6 芯片供电电压特性

表 14-4 芯片供电电压特性

次 14-4 - 67 [八····································									
工作温度 -30℃≤T₄≤+85℃									
符号	参数说明	测试条件	最小值	典型值	最大值	单位			
VDD	电源电压		2.6	-	5.5	V			
VLVR	VDD 起始电压确保能够产生欠压复位信号		2.2	-	2.6	V			
VPOR	VDD 起始电压确保能够产生内部上电复位信号		2.2	-	2.6	V			

14.7 A/D 转换器 (ADC) 特性

表 14-5 A/D 转换器(ADC)特性

	工作温度: -30°C≤T _A ≤+85°C								
符号	参数说明	测试条件	最小值	典型值	最大值	单位			
N _R *	分辨率		-	-	12	位			
E _{IL} *	积分误差	VREF = 5V, VDD=5.0V	-2	-	+2	LSB			
E _{DL} *	微分误差	VREF = 5V, VDD=5.0V	-1	-	+1	LSB			
E _{OFF} *	失调误差	VREF = 5V, VDD=5.0V	-	3	-	LSB			
E _{GN} *	增益误差	VREF = 5V, VDD=5.0V	-1.5	0.5	+1.5	LSB			
V _{REF} *	参考电压	保证1个LSb的精度	2	-	VDD	V			
V _{AIN} *	满量程范围		Vss	-	Vref	V			
TCNV*	AD转换时间		-	13	-	TAD			

^{*}该数据为设计值

14.8 内部参考电压模块特性

表 14-6 内部参考电压模块特性

工作温度: -30°C≤T _A ≤+85°C								
参数编号	符号	特性	最小值	典型值	最大值	单位	备注	
1	Vout	输出电压	-	2 3 4	-	V	Vout ≤ VDD ≤ 5.5 V	
2	Accuracy	精度	-5		+ 5	%	$Vout \le VDD \le 5.5 V$	

14.9 ESD 和 Latch up

表 25-16 ESD 和 Latch up 特性

符号	说明	最小值	最大值	单位	附注
VHBM	静电放电电压, 人体放电模式	-2000	+2000	V	1
VCDM	静电放电电压,设备充电模式	-250	+250	V	2
ILAT	125℃温度环境下的闩锁电流	-200	+200	mA	3

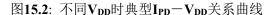
1.测试标准: JESD22-A114, HUMAN BODY MODEL ELECTROSTATIC DISCHARGE TEST。

2.测试标准: JESD22-C101, CHARGED DEVICE MODEL (CDM) ELECTROSTATIC DISCHARGE TEST。

3.测试标准: AEC-Q100-004-D,IC LATCH-UP TEST。

·在 125℃环境温度下进行测试 (II 类);

·电源组 1.5Vccmax。



15 直流特性图表

备注:某些图表中的数据超出了规定的工作范围(即超出了规定的V_{DD}范围),这些图表仅供参考,器件只有在规定的范围下工作才可以确保正常运行。

1000 典型值: 统计平均值(25°C) 900 -5.0V 800 -4.5V (PM) GGI -4.2V 700 -4.0V -3.5V 600 -3.3V 500 -3.0V -2.5V 400 62.5kHz 250kHz 500kHz 1MHz 2MHz 4MHz 8MHz 16MHz SCLK

图15.1: 不同VDD 时典型IDD-SCLK关系曲线图

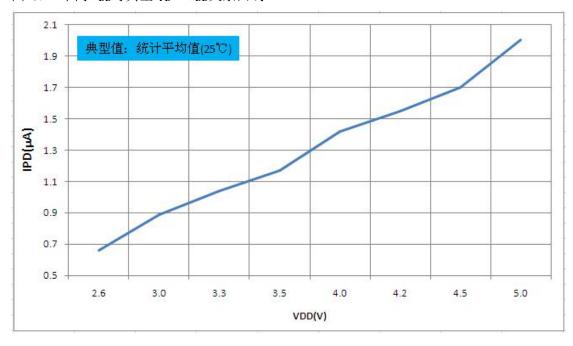


图15.3: 弱上拉电流IPUR - VDD 关系曲线图

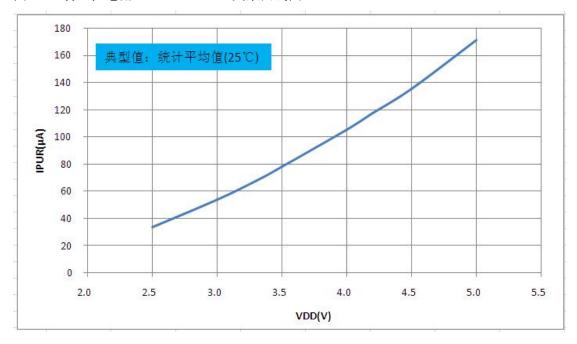
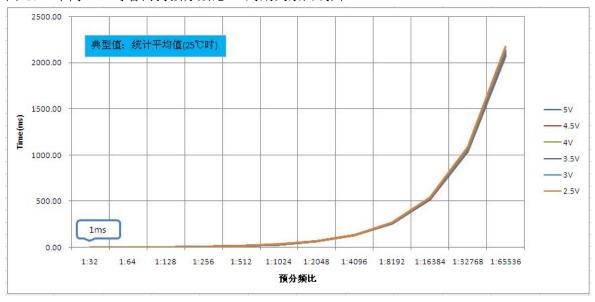



图15.4: 不同VDD时看门狗预分频比 一周期关系曲线图

注:1/32 分频时看门狗周期为 1ms。

图15.5:看门狗电流 - VDD关系曲线图

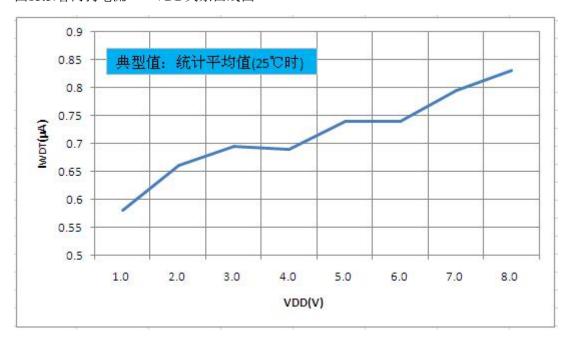
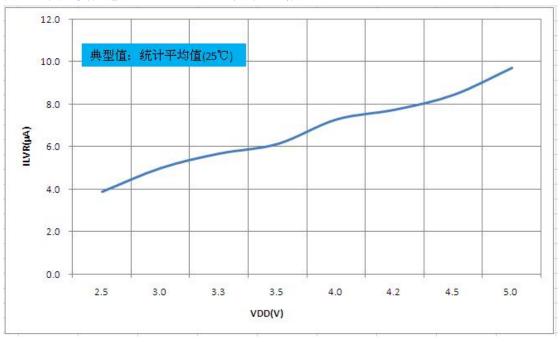



图 15.6:欠压复位电流 ILVR - VDD 关系曲线图

图**15.7**: **VOH** — **IOH** 关系曲线图(**VDD** = **5.0V**)

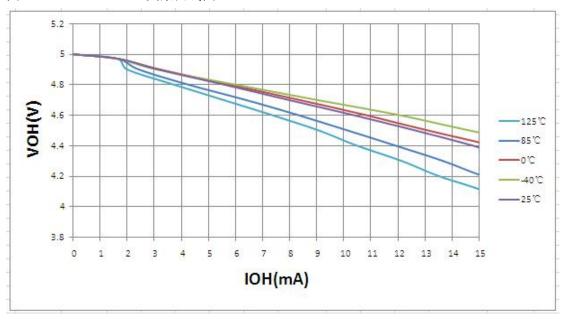


图15.8:VOH - IOH 关系曲线图(VDD = 3.0V)

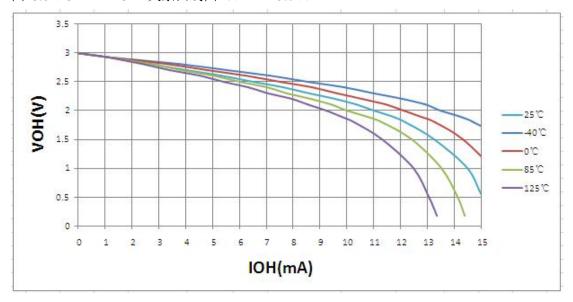


图15.9: VOL - IOL 关系曲线图 (VDD = 5.0V)

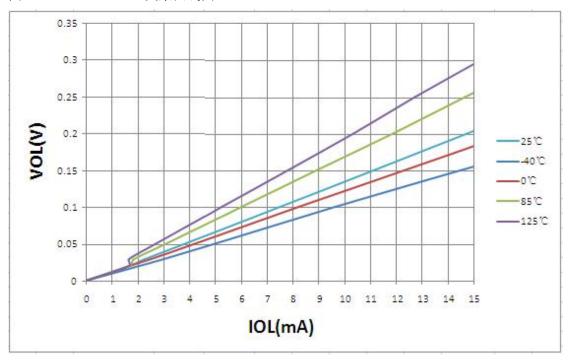


图15.10: VOL - IOL 关系曲线图 (VDD = 3.0V)

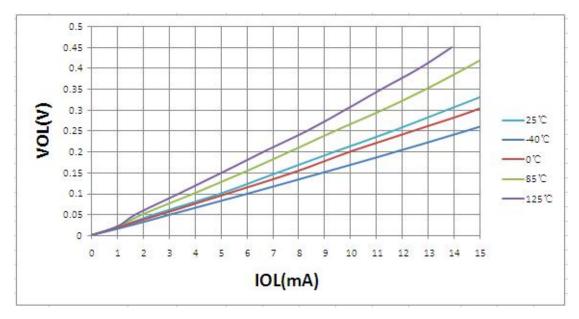
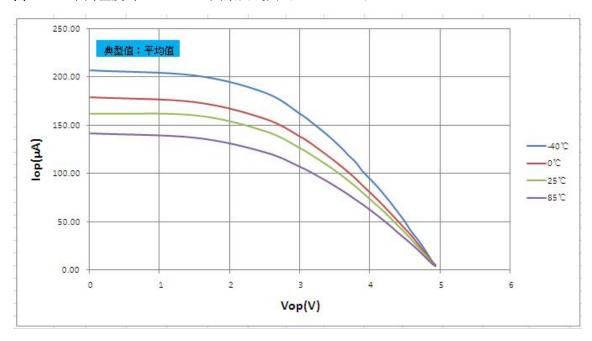
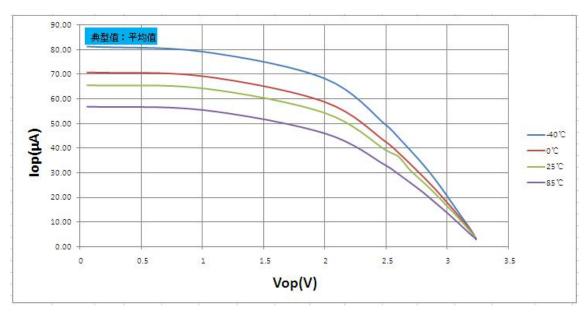
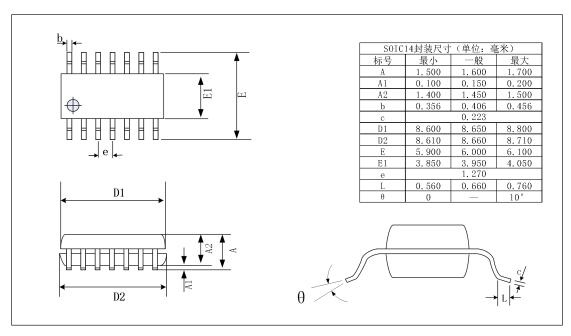
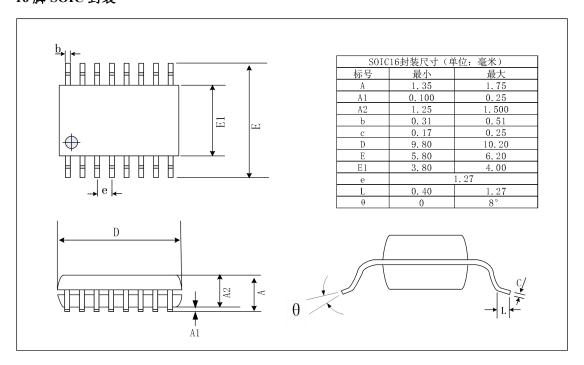


图15.11: 不同温度时VOP-IOP 关系曲线图 (VDD =5.0V)

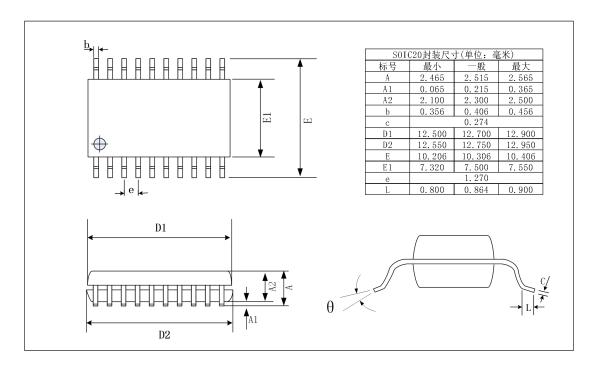




图 15.12: 不同温度时 VOP-IOP 关系曲线图 (VDD =3.3V)

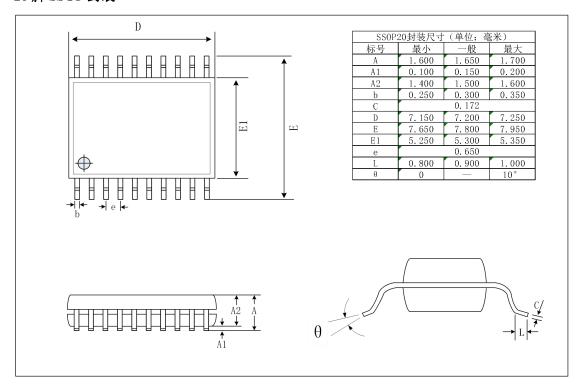


16 封装信息

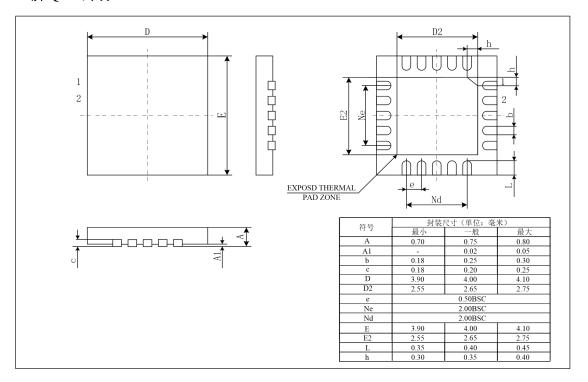
14 脚 SOIC 封装



16 脚 SOIC 封装



20 脚 SOIC 封装



20 脚 SSOP 封装

20 脚 QFN 封装

附录1 特殊功能寄存器(SFR)功能汇总

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位1	位 0	复位初值
01H	T0				定时/计数器 0(T0)寄存器			•	xxxx xxxx
02H	PCL	程序计数器(PC)低字节 00						0000 0000		
03H	PSW	-	-	-	TO	$\overline{\text{PD}}$	Z	DC	CY	0001 1xxx
05H	P0	-	-	P05	P04	P03	P02	P01	P00	xx xxxx
06H	P2	-	-	-	-	P23	P22	P21	P20	xxxx
07H	P1	P17	P16	P15	P14	P13	P12	P11	P10	xxxx xxxx
0AH	PCH	-	-	-		程月	亨计数器(PC)高导			0 0000
0BH	INTCTL	AIE/ AIEH	PUIE /AIEL	TOIE	INT0IE	POIE	TOIF	INT0IF	POIF	0000 0000
0CH	EIF1	-	ADIF	INT2IF	INT1IF	-	PWM2IF	-	T1IF	0000 0000
0DH	EIF2	T3IF	-	-	-	-	-	BCLIF	SSCIIF	0000 0000
0EH	T1L				定时/计数器 T1 化	5.字节寄存器			•	xxxx xxxx
0FH	T1H				定时/计数器 T1 高	高字节寄存器				xxxx xxxx
10H	T1CTL	TIRLD	T1GC	T1CKS1	T1CKS0	TIOSCEN	TISY	TICS	T10N	0000 0000
13H	PWM1L				PWM1 占空比i					xxxx xxxx
15H	PWMCTL	PWM24ON	PWM23ON	PWM22ON	PWM2ON	-	-	-	PWM10N	0000 0000
16H	PP1				PWM1 周期	寄存器				1111 1111
17H	BANK	-	-	-	-	PR3	PR2	PR1	PR0	0000
1AH	VDACS	-	VCEN	-	-	-	-	-	-	00000
1DH	ANSEH	SSCIPIN	-	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	0000 0000
1EH	ADCDATA0H				ADC 数据寄存	器 0 高字节				xxxx xxxx
1FH	ADCCTL0	ADLR	-	CHS3	CHS2	CHS1	CHS0	START	ADEN	0000 0000
21H	OPTR	PUPH	INT0SE	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111
22H	IP0	-	-	-	-	-	PT0	PINT0	PP0	000
23H	IP1	-	PADC	PINT2	PINT1	-	PPWM2	-	PT1	0000 0000
24H	IP2	PT3	-	-	-	-	-	PBCL	PSSCI	0000 0000
25H	TR0	-	-	TR05	TR04	TR03	TR02	TR01	TR00	1111 1111
26H	TR2	-	-	-	-	TR23	TR22	TR21	TR20	1111 1111
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10	1111 1111
28H	OSCSTA	-	OSTS	HTS	LTS	-	-	SCF1	SCF0	011000
29H	IP3	PT4	-	POSCFAIL	-	-	-	-	-	000
2AH	VRECAL1		1	1	内核电压校准		ı			0111 0111
2BH	VRECTL	VRESEL1	VRESEL0	VRECALEN	VRECKEN	VREOE	-	VREEN	-	0000 0000
2CH	EIE1	-	ADIE	INT2IE	INT1IE	-	PWM2IE	-	TIE	0000 0000
2DH	EIE2	T3IE	-	-	-	-	-	BCLIE	SSCIIE	0000 0000
2EH	PCTL	-	-	-	SLVREN	IPEN	SWDTEN	POR	LVR	1 000x
2FH	OSCCTL	CLKOE	IRCS2	IRCS1	IRCS0	SCS1	SCS0	IESO	FSCM	0010 0000
30H	OSCCAL0			T	晶振校准值?		T			1000 0000
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	0000 0000
32H	PP2							1111 1111		
33H	PWM2L		I		PWM2 占空比i	文直奇仔器	p. v. v			XXXX XXXX
35H	PUR0	-	-	PUR05	PUR04	- YO 67 7	PUR02	PUR01	PUR00	1111 -111
36H	IOCL	-	-	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0	0000 0000
37H	OSCCAL1								0000 -001	
38H	NVMDATAH								0000 0000	
39H	NVMDATAL								0000 0000	
3AH	NVMADDRH								0000 0000	
3BH	NVMADDRL								0000 0000	
3CH	NVMCTL0							x000		
3DH	NVMCTL1	William back the second of the								
3EH	ADCDATA0L	ADCALES	4 D.C.C.	A Dogs	ADC 数据寄存		Vonco		A DOD (XXXX XXXX
3FH	ADCCTL1	ADCALEN	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	-	ADCIM	0000 0000

芯旺微电子 - 151/160 - Chip**ON**

KF8TS2508/2510/2514 数据手册 V1. 8

45H POLR - - POLR5 POLR4 - POLR2 POLR1 POLR0 2xx 46H P1R P1				/							
P2LR	地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	复位初值
47H	45H	P0LR	-	-	P0LR5	P0LR4	-	P0LR2	P0LR1	P0LR0	xxxx xxxx
4AH EIF3	46H	P2LR	-	-	-	-	P2LR3	P2LR2	P2LR1	P2LR0	xxxx xxxx
4BH EIF3	47H	P1LR	P1LR7	P1LR6	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0	xxxx xxxx
ACH OSCCAL2	4AH	EIE3	T4IE	-	OSCFAILIE	-	-	-	-	-	000
ADH OSCCAL3	4BH	EIF3	T4IF	-	OSCFAILIF	-	-	-	-	-	000
Tach	4CH	OSCCAL2				晶振校准值	寄存器 2			•	0011 1111
Table	4DH	OSCCAL3				晶振校准值	寄存器 3				0011 1111
S3H	4EH	T3CTL	T3EN	T3CKS1	T3CKS0	T3CS	PWMS	-	-	-	0000 0000
SFH T3H T3 高位寄存器	4FH	T3L				T3 低位署	序存器				0000 0000
PUR1	53H	CTCTL0	CTEN	CTSTART	T3CLR	CTCHSEL4	CTCHSEL3	CTCHSEL2	CTCHSEL1	CTCHSEL0	0000 0000
Filt	5FH	Т3Н				T3 高位智	F存器			•	0000 0000
PWM12	60H	PUR1	PUR17	PUR16	PUR15	PUR14	PUR13	PUR12	PUR11	PUR10	1111 1111
PWM13	61H	PUR2	-	-	-	-	PUR23	PUR22	PUR21	PUR20	1111 1111
CTCTL1	62H	PWM12			PV	 WM22 占空比设置	置寄存器低8位				xxxx xxxx
PWM22	63H	PWM13			PV	WM23 占空比设置	置寄存器低8位				xxxx xxxx
PWM23	64H	CTCTL1	CTCLKSEL1	CTCLKSEL0	PRSGEN	PRSGM1	PRSGM0	PRSGSTA	-	VSEL	0000 0000
NTEDGCTL INT2SE INT1SE - - - - TICLKEN TICLKEN	65H	PWM22		PWM22 占空比设置寄存器高 8 位							xxxx xxxx
PWM14	66H	PWM23		PWM23 占空比设置寄存器高 8 位						xxxx xxxx	
PWM24	67H	INTEDGCTL	INT2SE	INT1SE	-	-	-	-	-	T1CLKEN	110
112H	68H	PWM14	PWM24 占空比设置寄存器低 8 位							xxxx xxxx	
VRES	69H	PWM24			PV	WM24 占空比设置	置寄存器高8位				xxxx xxxx
128H SSCICTL0 SSCIWCFL SSCIOV SSCIEN SSCIKCP SSCIMOD3 SSCIMOD2 SSCIMOD1 SSCIMOD0 000 12AH SSCICTL1 SSCICALLEN SSCIACKSTA SSCIACKDAT SSCIACKEN SSCIRCEN STOPEN RESTARTEN STARTEN 000 12BH SSCISTA -	112H	VDAC	VDAC3	VDAC2	VDAC1	VDAC0	-	-	-	-	0000 0000
12AH SSCICTL1 SSCICALLEN SSCIACKSTA SSCIACKDAT SSCIACKEN SSCIRCEN STOPEN RESTARTEN OUT 12BH SSCISTA - SSCIDA SSCISTOP SSCISTART SSCIRW SSCIUA SSCIBUF OUT 12CH SSCIBUFR SSCIADD SSCIBUFR SSCIACKEN SSCIBUF OUT 12EH SSCIADD SSCIACKEN SSCIMSK5 SSCIMSK4 SSCIMSK3 SSCIMSK2 SSCIMSK1 SSCIMSK6 IT 12FH WDTPS - - WDTPS3 WDTPS2 WDTPS1 WDTPS0 159H VRECAL2 PA®参考电压校准寄存器 2 OUT 15AH VRECAL3 PA®参考电压校准寄存器 3 ID 15BH CTCTL2 - - CTMODE RSEL3 RSEL2 RSEL1 RSEL0 OUT 160H T4L T4 (8 & 0	113H	VRES	VRES3	VRES2	VRES1	VRES0	-	-	-	-	0000 0000
12BH SSCISTA - - SSCIDA SSCISTOP SSCISTART SSCIRW SSCIUA SSCIBUF 000 12CH SSCIBUFR SSCIADD SSCIADD SSCIADD SSCIADD SSCIADD SSCIMSK SCIMSK SC	128H	SSCICTL0	SSCIWCFL	SSCIOV	SSCIEN	SSCICKP	SSCIMOD3	SSCIMOD2	SSCIMOD1	SSCIMOD0	0000 0000
SSCI 数据接收缓冲/发送寄存器 SSCIADD SSCIMSK SSCIMSK SSCIMSK6 SSCIMSK5 SSCIMSK4 SSCIMSK3 SSCIMSK2 SSCIMSK1 SSCIMSK0 11 12FH WDTPS SSCIMSK6 SSCIMSK5 SSCIMSK3 SSCIMSK2 SSCIMSK1 SSCIMSK0 11 12FH WDTPS - - - WDTPS3 WDTPS2 WDTPS1 WDTPS0 159H VRECAL2 - - - - CTMODE RSEL3 RSEL2 RSEL1 RSEL0 000 160H T4L T4 € € € - - - - CTMODE RSEL3 RSEL2 RSEL1 RSEL0 000 161H T4H T4 € 8 € - 000 162H T4REL T4 重载寄存器低 8 € xxx 163H T4REH T4 重载寄存器高 8 € xxx 164H T4CTL T4REN HSPEN T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	12AH	SSCICTL1	SSCICALLEN	SSCIACKSTA	SSCIACKDAT	SSCIACKEN	SSCIRCEN	STOPEN	RESTARTEN	STARTEN	0000 0000
SSCIADD	12BH	SSCISTA	-	-	SSCIDA	SSCISTOP	SSCISTART	SSCIRW	SSCIUA	SSCIBUF	0000 0000
SSCIMSK	12CH	SSCIBUFR			S	SCI 数据接收缓	中/发送寄存器				xxxx xxxx
SSCIMSK SSCIMSK7 SSCIMSK6 SSCIMSK5 SSCIMSK4 SSCIMSK3 SSCIMSK2 SSCIMSK1 SSCIMSK0 11 12FH WDTPS - - - WDTPS3 WDTPS2 WDTPS1 WDTPS0 159H VRECAL2 - - - Ammonia of the property of the pr	12511	SSCIADD	SSCI 的 I2C 地址寄存器							0000 0000	
159H VRECAL2 内部参考电压校准寄存器 2 000 15AH VRECAL3 内部参考电压校准寄存器 3 101 15BH CTCTL2 - - CTMODE RSEL3 RSEL2 RSEL1 RSEL0 000 160H T4L T4 低 8 位 000 161H T4H T4 高 8 位 000 162H T4REL T4 重载寄存器低 8 位 xxx 163H T4REH T4 重载寄存器高 8 位 xxx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CN 000	12EH	SSCIMSK	SSCIMSK7	SSCIMSK6	SSCIMSK5	SSCIMSK4	SSCIMSK3	SSCIMSK2	SSCIMSK1	SSCIMSK0	1111 1111
15AH VRECAL3 内部参考电压校准寄存器 3 101 15BH CTCTL2	12FH	WDTPS	-	-	-	-	WDTPS3	WDTPS2	WDTPS1	WDTPS0	0100
15BH CTCTL2 - - CTMODE RSEL3 RSEL2 RSEL1 RSEL0 000 160H T4L T4 € 8 位 000 161H T4H T4 高 8 位 000 162H T4REL T4 重载寄存器低 8 位 xxx 163H T4REH T4 重载寄存器高 8 位 xxx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	159H	VRECAL2	内部参考电压校准寄存器 2							0000 0000	
160H T4L T4 低 8 位 000 161H T4H T4 高 8 位 000 162H T4REL T4 重载寄存器低 8 位 xxx 163H T4REH T4 重载寄存器高 8 位 xxx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CN 000	15AH	VRECAL3	内部参考电压校准寄存器 3 1						1010 0000		
161H T4H T4高8位 000 162H T4REL T4重载寄存器低8位 xx 163H T4REH T4重载寄存器高8位 xx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	15BH	CTCTL2	-	-	-	CTMODE	RSEL3	RSEL2	RSEL1	RSEL0	00000000
162H T4REL T4 重载寄存器低 8 位 xxx 163H T4REH T4 重载寄存器高 8 位 xxx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	160H	T4L	T4 低 8 位						0000 0000		
163H T4REH T4 重载寄存器高 8 位 xxx 164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	161H	Т4Н							0000 0000		
164H T4CTL T4REN HSPEN T4CKS1 T4CKS0 LSPEN T4CS1 T4CS0 T4ON 000	162H	T4REL							xxxx xxxx		
	163H	T4REH	T4 重载寄存器高 8 位 xx						xxxx xxxx		
145U PC22VCAI 由並 22V 拒涉 奥帕麦 於 於 安 方 思	164H	T4CTL	T4REN	HSPEN	T4CKS1	T4CKS0	LSPEN	T4CS1	T4CS0	T4ON	0000 0000
IUJI	165H	RC32KCAL	内部 32K 振荡器频率校验寄存器 0					0000 0000			

注:"-"表示未用的存储单元 "x"表示不定

芯旺微电子 - 152/160 - Chip**ON**

附录 2 汇编指令集

助记符、操作数	指令格式	指令说明	周期	影响标志
NOP	0000_0000_0000_0000	空操作指令	1	
NOPZ	1111_1111_1111	空操作指令	1	
CRET	0000_0000_0000_1000	子程序返回指令	2	
RRET Rn,#data	1011 Orrr kkkk kkkk	立即数送到 Rn 中返回	2	
IRET	0000 0000 0000 1001	中断返回指令	2	
CWDT	0000 0000 0110 0100	WDT 清零	1	
IDLE	0000_0000_0110_0011	进入休眠模式	1	
IDEE		数据传送指令	1	
MOV dir	0000 1111 ffff ffff	dir←(dir)	1	Z
MOV Rn,dir	0101 rrr0 ffff ffff	Rn←(dir)	1	
MOV dir,Rn	0101_rrr1_ffff_ffff	dir←(Rn)	1	
MOV Rn,#data	1001_1rrr_kkkk_kkkk	Rn←data	1	
MOV Rn,Rs	1111_1000_11ss_srrr	Rn←(Rs)	1	
LD Rn,[Rs]	1111_0111_00ss_srrr	$Rn \leftarrow ((Rs))$	1	
ST [Rn],Rs	1111_0111_01ss_srrr	(Rn)←(Rs)	1	
SWAPR Rn,dir	0100_rrr0_ffff_ffff	Rn<7:4>=dir<3:0> Rn<3:0>=dir<7:4>	1	
SWAP dir	0100_rrr1_ffff_ffff	dir<7:4>=dir<3:0> dir<3:0>=dir<7:4>	1	
MOVB #data	1110_0001_kkkk_kkkk	BANK←data	1	
MOVP #data	1110_0000_kkkk_kkkk	PCH←data	1	
	,	算术运算指令 算术运算指令		
ADD Rm,dir	0010_0rr0_ffff_ffff	$Rm \leftarrow (Rm) + (dir)$	1	CY, DC, Z
ADD dir,Rm	0010_0rr1_ffff_ffff	dir←(Rm)+(dir)	1	CY, DC, Z
ADD Rn,#data	1000_0rrr_kkkk_kkkk	Rn←(Rn)+data	1	CY, DC, Z
ADD Rn,Rs	1111_1000_00ss_srrr	$Rn \leftarrow (Rn) + (Rs)$	1	CY, DC, Z
SUB Rm,dir	0011_1rr0_ffff_ffff	Rm←(dir)-(Rm)	1	CY, DC, Z
SUB dir,Rm	0011 1rr1 ffff ffff	dir←(dir)-(Rm)	1	CY, DC, Z
SUB Rn,#data	1010 Orrr kkkk kkkk	Rn←data-(Rn)	1	CY, DC, Z
SUB Rn,Rs	1111 1000 01ss srrr	Rn←(Rs)-(Rn)	1	CY, DC, Z
CMP Rn,#data	1111_0010_1kkk_krrr	-	1	CY, DC, Z
CMP Rn,Rs	1111_0001_10ss_srrr	-	1	CY, DC, Z
INC dir	0000 1011 ffff ffff	dir←(dir)+1	1	Z
INCR dir	0000 1010 ffff ffff	R0←(dir)+1	1	Z
INC Rn	1111_1111_0001_0rrr	Rn←(Rn)+1	1	Z
DEC dir	0000_0111_ffff_ffff	dir←(dir)-1	1	Z
DECR dir	0000_0110_ffff_ffff	R0←(dir)-1	1	Z
DEC Rn	1111_1111_0000_1rrr	Rn←(Rn)-1	1	Z
		逻辑运算指令		
AND Rm,dir	0010_1rr0_ffff_ffff	$Rm\leftarrow(Rm)\land(dir)$	1	Z
AND dir,Rm	0010_1rr1_ffff_ffff	$\operatorname{dir}\leftarrow(\operatorname{dir})\wedge(\operatorname{Rm})$	1	Z
AND Rn,#data	1000_1rrr_kkkk_kkkk	Rn←(Rn) \\ data	1	Z
AND Rn,Rs	1111_1000_10ss_srrr	$Rn\leftarrow(Rn)\land(Rs)$	1	Z
ORL Rm,dir	0011_0rr0_ffff_ffff	$Rm \leftarrow (Rm) \lor (dir)$	1	Z
ORL dir,Rm	0011_0rr1_ffff_ffff	dir←(dir) ∨ (Rm)	1	Z
ORL Rn,#data	1001_0rrr_kkkk_kkkk	Rn←(Rn)∨data	1	Z
ORL Rn,Rs	1111_1001_00ss_srrr	$Rn\leftarrow(Rn)\lor(Rs)$	1	Z

KF8TS2508/2510/2514 数据手册 V1.8

助记符、操作数	指令格式	指令说明	周期	影响标志
XOR Rm,dir	0001_1rr0_ffff_ffff	$Rm \leftarrow (Rm) \oplus (dir)$	1	Z
XOR dir,Rm	0001_1rr1_ffff_ffff	dir←(dir)⊕(Rm)	1	Z
XOR Rn,#data	1010_1rrr_kkkk_kkkk	Rn←(Rn)⊕data	1	Z
XOR Rn,Rs	1111_1001_01ss_srrr	$Rn \leftarrow (Rn) \oplus (Rs)$	1	Z
CLR Rn	0000_0010_xxxx_1rrr	Rn=0	1	Z
CLR dir	0000_0011_ffff_ffff	dir=0	1	Z
CPLR dir	0000_0100_ffff_ffff	R0←/(dir)	1	Z
CPL dir	0000_0101_ffff_ffff	dir←/(dir)	1	Z
CPL Rn	1111_1111_0000_0rrr	Rn←/(Rn)	1	Z
RRCR dir	0001_0000_ffff_ffff	R0←(dir) 带进位 C 循环右移 1 位	1	CY
RRC dir	0001_0001_ffff_ffff	dir←(dir) 带进位 C 循环右移 1 位	1	CY
RRC Rn	1111_1111_0010_0rrr	Rn←(Rn) 带进位 C 循环右移 1 位	1	CY
RLCR dir	0001_0010_ffff_ffff	R0←(dir)带进位 C 循环左移 1 位	1	CY
RLC dir	0001_0011_ffff_ffff	dir←(dir)带进位 C 循环左移 1 位	1	CY
RLC Rn	1111_1111_0001_1rrr	Rn←(Rn) 带进位 C 循环左移 1 位	1	CY
		位操作指令		
CLR dir,b	0110_0bbb_ffff_ffff	将 dir 的 b 位清零	1	
SET dir,b	0110_1bbb_ffff_ffff	将 dir 的 b 位置 1	1	
CLR Rn,b	1111_1110_00bb_brrr	将 Rn 的 b 位清零	1	
SET Rn,b	1111_1110_01bb_brrr	将 Rn 的 b 位置 1	1	
		转移指令		
DECRJZ dir	0000_1000_ffff_ffff	R0←(dir)-1,为0跳过下一条指令	1/2	
DECJZ dir	0000_1001_ffff_ffff	dir←(dir)-1,为 0 跳过下一条指令	1/2	
DECJZ Rn	1111_1111_0101_1rrr	Rn←(Rn)-1,为 0 跳过下一条指令	1/2	
INCRJZ dir	0000_1100_ffff_ffff	R0←(dir)+1,为 0 跳过下一条指令	1/2	
INCJZ dir	0000_1101_ffff_ffff	dir←(dir)+1,为 0 跳过下一条指令	1/2	
INCJZ Rn	1111_1111_0101_0rrr	Rn←(Rn)+1,为 0 跳过下一条指令	1/2	
JNB dir,b	0111_0bbb_ffff_ffff	dir 的 b 位为 0 跳过下一条指令	1/2	
JB dir,b	0111_1bbb_ffff_ffff	dir 的 b 位为 1 跳过下一条指令	1/2	
JNB Rn,b	1111_0111_10bb_brrr	Rn 的 b 位为 0 跳过下一条指令	1/2	
JB Rn,b	1111_0111_11bb_brrr	Rn 的 b 位为 1 跳过下一条指令	1/2	
JMP #data12	1100_kkkk_kkkk_kkkk	无条件转移指令	2	
CALL #data12	1101_kkkk_kkkk_kkkk	子程序调用指令	2	
		The state of the s		1

注: dir 为通用寄存器或特殊功能寄存器; Rn、Rs 表示 R0~R7; Rm 表示 R0~R3; #data 表示 8 位立即数; #data12 表示 12 位立即数; b 表示寄存器的第 b 位; [Rn]表示 Rn 中的数值指向的地址中数据;()表示特殊功能寄存器、通用数据寄存器或寄存器组中的数据。

芯旺微电子 - 154/160 - ChipON

附录 3 寄存器全称表

BANK0					
地址	名称	全称			
01H	T0	Timer 0 register			
02H	PCL	Program Counter Low register			
03H	PSW	Program Status Word register			
05H	P0	Port 0			
06H	P2	Port 2			
07H	P1	Port 1			
0AH	PCH	Program Counter High register			
0BH	INTCTL	Interrupt control register			
0CH	EIF1	Enable Interrupt Flag register 1			
0DH	EIF2	Enable Interrupt Flag register 2			
0EH	T1L	Timer 1 register Low			
0FH	T1H	Timer 1 register High			
10H	T1CTL	Timer 1 Control register			
13H	PWM1L	Pulse-Width Modulation duty cycle register 1 Low			
14H	PWM1H	Pulse-Width Modulation duty cycle register 1 High			
15H	PWMCTL	Pulse-Width Modulation Control register			
16H	PP1	Pulse-Width Modulation Periods register 1			
17H	BANK	BANK			
1CH	VRECAL0	Core Voltage Calibration register 0			
1DH	ANSEH	Analog channel Selection register High			
1EH	ADCDATA0H	Analog Digital Convert Data 0 High register			
1FH	ADCCTL0	Analog Digital Convert Control register 0			
21H	OPTR	Option Register			
22H	IP0	Interrupt Priority 0 register			
23H	IP1	Interrupt Priority 1 register			
24H	IP2	Interrupt Priority 2 register			
25H	TR0	Tri Register 0			
26H	TR2	Tri Register 2			
27H	TR1	Tri Register 1			
28H	OSCSTA	Oscillator Status register			
29H	IP3	Interrupt Priority3 register			
2AH	VRECAL1	Reference Voltage Calibration register 1			
2BH	VRECTL	Reference Voltage Control register			
2CH	EIE1	Enable Interrupt Enable register 1			
2DH	EIE2	Enable Interrupt Enable register 2			
2EH	PCTL	Power Control register			
2FH	OSCCTL	Oscillator Control register			
30H	OSCCAL0	Oscillator Collibration register 0			
31H	ANSEL	Analog channel Selection register Low			
32H	PP2	Pulse-Width Modulation Periods register 2			
33H	PWM2L	Pulse-Width Modulation duty cycle register 2 Low			
34H	PWM2H	Pulse-Width Modulation duty cycle register 2 High			
35H	PUR0	Pull-Up Register 0			
36H	IOCL	P0 Interrrupt on change register			
37H	OSCCAL1	Oscillator Calibration register 1			
38H	NVMDATAH	NVW Buffer Data register High			
		C C			
39H	NVMDATAL	NVM Buffer Data register Low			
3AH	NVMADDRH	NVM Buffer Address register High			

12CH

12EH

12FH

159H

15AH

165H

SSCIBUFR

SSCIMSK

VRECAL2

VRECAL3

RC32KCAL

WDTPS

KF8TS2508/2510/2514 数据手册 V1.8

3BH	NVMADDRL	NVM Buffer Address register Low
3CH	NVMCTL0	Nonvolatile Memory control register 1
3DH	NVMCTL1	Nonvolatile Memory control register 2
3EH	ADCDATA0L	Analog Digital Convert Data 0 register Low
3FH	ADCCTL1	Analog Digital Convert Control register 1
45H	P0LR	Port 0 Latch Register
46H	P2LR	Port 2 Latch Register
47H	P1LR	Port 1 Latch Register
49H	TR3	Tri Register 3
4AH	EIE3	Enable Interrupt register 3
4BH	EIF3	Enable Interrupt Flag register 3
4CH	OSCCAL2	Oscillator Calibration register 2
4DH	OSCCAL3	Oscillator Calibration register 3
4FH	T3L	Timer 3 register low
53H	CTCTL0	Capacitance Touch Control register 0
5FH	ТЗН	Timer 3 High register
60H	PUR1	Pull-Up Resistor 1
61H	PUR2	Pull-Up Resistor 2
64H	CTCTL1	Capacitance Touch Control register 1
67H	INTEDGCTL	Interrupt Edge Control register
		BANK1
地址	名称	全称
101H	T0	Timer 0 register
102H	PCL	Program Counter Low register
103H	PSW	Program Status Word register
10AH	PCH	Program Counter High
120H	RSCTL	Receive Status Control register
128H	SSCICTL0	Synchronous Serial Communication Interface Control register 0
12AH	SSCICTL1	Synchronous Serial Communication Interface Control register 0
12BH	SSCISTA	Synchronous Serial Communication Interface Status register
4.6.000		

Synchronous Serial Communication Interface Buffer register

Synchronous Serial Communication Interface Mask register

Watchdog Pre-divider Selection register

Reference Voltage Calibration 2 Reference Voltage Calibration 3

RC32K Calibration

产品标识体系

产品系列: KF8TS = KF 系列触摸 8 位单片机

产品型号: 2514 = 2514型

封装形式: SD = SOIC-14

SE = SOIC-16 SG = SOIC-20 OG = SSOP-20 NG = QFN-20

示例:

KF8TS2508SD 表示 KF8TS 系列 SOIC14 封装单片机
 KF8TS2510SE 表示 KF8TS 系列 SOIC16 封装单片机
 KF8TS2514SG 表示 KF8TS 系列 SOIC20 封装单片机
 KF8TS2514OG 表示 KF8TS 系列 SSOP20 封装单片机
 KF8TS2514NG 表示 KF8TS 系列 QFN20 封装单片机

版本说明

版本	更新描述	更新日期
V1.0	修复了已知的 bug	
V1.1	修改了文档中部分叙述	
	更新触摸章节	
	触摸周期扫描方式时增加计算公式	
V1.2	修改 PWM1/2 周期与脉冲宽度公式	
	更新 WDT 章节内容章节	
	增加芯片使用注意事项内容	
	去掉 SFR 汇总表中的 ADCDATA3L 寄存器	
	增加多余 IO 端口的第二点说明	
V1.3	增加 AD 校准使能时关闭 ADC,需清零 ADCCALIEN 位说明	
	上拉功能说明	
	去掉外设特性中的弱上拉项,直流特性图表增加 VOP-IOP 曲线图	
V1.4	更新触摸章节: 删除伪随机相关内容;	2018-1-5
V 1.4	在 AIEL 位和 IPEN 位增加使用备注;	2016-1-3
V1.5	增加 KF8TS2514OG,SSOP-20 封装型号	2018-9-29
V1.6	增加 KF8TS2514NG,QFN-20 封装型号	2019-08-08
V1.8	更新 PWM 引脚映射相关内容	2020-05-29

RoHS 认证

本产品已通过 RoHS 检测。

声明及销售网络

销售及服务网点:

上海 TEL:021-50275927

地址 上海浦东张江集电港龙东大道 3000 号 1 幢 906 室 B1 座